Low-Dose Aspirin, Atherothrombosis and Cancer

Carlo Patrono
Catholic University School of Medicine
Rome, Italy

ALPIC 2013

Metsovo, Greece, 19 January 2013
Disclosure

I have received consultant and speaker fees from:

AstraZeneca, Bayer, Eli Lilly, Merck.

I have received grant support for investigator-initiated research from:

• European Commission, FP6 and FP7 Programmes
• Bayer, Servier
Acetylation of Platelet COX-1, Inhibition of TXA₂ Production and Reduction of Vascular Events by Aspirin are Saturable at Low Doses

Mechanism of Action

Clinical Pharmacology of Platelet COX-1

ATT Collaboration Meta-Analysis of Aspirin Trials in High-Risk Patients

Comparison	Aspirin	Control	Reduction
Asp 75-150 | 11.0% | 15.2% | 32%±6
Asp 160-325 | 11.5% | 14.8% | 26%±3
Asp 500-1500 | 14.5% | 17.2% | 19%±3
Any aspirin | 12.9% | 16.1% | 23%±2 (2P<0.00001)

J Clin Invest 1982;69:1366-72

BMJ 2002;324:71-86
Serious Vascular Events in Primary Prevention Trials

<table>
<thead>
<tr>
<th>End-point</th>
<th>Events (% per annum)</th>
<th>Ratio of annual event rates (& CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allocated aspirin</td>
<td>Adjusted control</td>
</tr>
<tr>
<td>Non-fatal MI</td>
<td>596 (0.18%/y)</td>
<td>756 (0.23%/y)</td>
</tr>
<tr>
<td>CHD death</td>
<td>372 (0.11%/y)</td>
<td>393 (0.12%/y)</td>
</tr>
<tr>
<td>(a) Any major coronary event</td>
<td>934 (0.28%/y)</td>
<td>1115 (0.34%/y)</td>
</tr>
<tr>
<td>(b) Any Stroke</td>
<td>655 (0.20%/y)</td>
<td>682 (0.21%/y)</td>
</tr>
<tr>
<td>(c) Vascular death</td>
<td>619 (0.19%/y)</td>
<td>637 (0.19%/y)</td>
</tr>
<tr>
<td>(a/b/c) any serious vascular event</td>
<td>1671 (0.51%/y)</td>
<td>1883 (0.57%/y)</td>
</tr>
</tbody>
</table>

- **99% or 95% confidence intervals**
- **Aspirin better**
- **Aspirin worse**

ATT Collaboration, Lancet 2009;373:1849-60
Balancing the Benefits and Bleeding Risks of Aspirin, as a Function of CHD Risk

ATT Collaboration, Lancet 2009; 373:1849-60
Balancing the Benefits and Bleeding Risks of Aspirin, as a Function of CHD Risk

5-year CHD risk >10%

A = Aspirin
C = Control

$\Delta = +10$ per 1,000 in 5 yr

Aspirin ALONE

A C
14.0% 16.0%

Non-fatal MI, stroke or vascular death

Aspirin ADDED to other drugs that halve risk

A C
7.0% 8.0%

Non-fatal GI bleed

ATT Collaboration, Lancet 2009; 373:1849-60
American College of Chest Physicians 2012 Guidelines

For persons aged 50 years or older without symptomatic cardiovascular disease, we suggest low-dose aspirin 75 to 100 mg daily over no aspirin therapy (Grade 2B).

Vandvik et al, CHEST 2012; 141(Suppl):e637S–e668S
Aspirin cannot be recommended in primary prevention due to its increased risk of major bleeding (Grade IIIIB).

Perk et al, Eur Heart J 2012; May 3 Epub ahead of print
“Hence, the currently available trial results do not seem to justify general guidelines advocating the routine use of aspirin in all asymptomatic individuals above a moderate level of coronary risk, unless additional long-term benefits of antiplatelet therapy become established”.

Patrono et al, Eur Heart J 2011; 32:2922-32
Arachidonic Acid

Aspirin

NSAIDs

COX-1

COX-2

PGH₂

Prostaglandin synthases

PGD₂, PGF₂α, PGI₂, TXA₂

PGE₂

PPARδ

β-Catenin

EGF-R

PI₃K/AKT

transcriptional activity

Cyclin D₁

Bcl-2

VEGF

Biologic activities

Growth

Migration & invasion

Anti-apoptosis

Angiogenesis

Modified from Markowitz. NEJM 2007;356:2195-8
RCTs of Aspirin or COX-2 Inhibitors in Patients with Previous Polyps or Colorectal Cancer

- **4 RCTs of aspirin**

- **3 RCTs of COX-2 inhibitors**
 - Baron JA et al. Gastroenterology 2006; 131:1674-82
Relative Risk of Any Colorectal Adenoma at Follow-up Endoscopic Examination

<table>
<thead>
<tr>
<th>Drug/dose</th>
<th>RR (95% CI)</th>
<th>Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celecoxib 400 mg bid</td>
<td></td>
<td>APC, 2006</td>
</tr>
<tr>
<td>Celecoxib 200 mg bid</td>
<td></td>
<td>APC, 2006</td>
</tr>
<tr>
<td>Rofecoxib 25 mg</td>
<td></td>
<td>APPROVe, 2006</td>
</tr>
<tr>
<td>Aspirin 325 mg</td>
<td></td>
<td>Sandler et al, 2003</td>
</tr>
<tr>
<td>Aspirin 325 mg</td>
<td></td>
<td>Baron et al, 2003</td>
</tr>
<tr>
<td>Aspirin 81 mg</td>
<td></td>
<td>Baron et al, 2003</td>
</tr>
</tbody>
</table>

Patrono & Rocca, ATVB 2008;28:25S-32S
Activated Platelets at Sites of Intestinal Mucosal Injury

Pro-angiogenic

\[\text{TXA}_2 \]
\[\text{PDGF} \]
\[\text{TGF}\beta \]

Endothelial cells

\[\uparrow \text{COX-2} \]

\[\downarrow \text{Angiogenesis} \]

Low-dose Aspirin

Pro-inflammatory

\[\text{PGE}_2 \]
\[\text{IL-1}\beta \]

Stromal cells

\[\uparrow \text{COX-2} \]

\[\downarrow \text{Apoptosis} \uparrow \text{Cellular proliferation} \]

Aspirin and Colorectal Cancer

• If aspirin does indeed prevent the early development of an adenomatous lesion, one would require a long-term follow-up of aspirin-treated patients in order to detect a beneficial effect on the risk of colorectal cancer (CRC) and CRC-related death.
Long-Term Effect of Aspirin on Colorectal Cancer Incidence and Mortality: 20-Year Follow-Up of Five Randomised Trials.

Rothwell PM et al. Lancet 2010;376:1741-50
Pooled Analysis of the Effect of Low-Dose (75-300mg) Aspirin (thick line) versus Control (thin line) on Subsequent Incidence and Mortality Due to Colorectal Cancer in TPT, SALT and UK-TIA

A: 4030 3618 3095 2552 779
C: 4043 3645 3149 2545 806

Rothwell PM et al, Lancet 2010; 376:1741-50
Aspirin and Colorectal Cancer

- If the chemopreventive effect of aspirin is related - directly or indirectly - to its antiplatelet action, then one would expect saturability of cancer prevention at low doses (ie 75-100 mg) given once daily.
Death Due to Colorectal Cancer on Long-Term Follow-Up After Randomization in Trials of Aspirin vs Control

<table>
<thead>
<tr>
<th>Deaths due to Cancer</th>
<th>Odds Ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>500-1200mg daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>British Doctors Study (500mg)</td>
<td>59/3429</td>
<td>40/1710</td>
</tr>
<tr>
<td>UK-TIA (1200mg)</td>
<td>11/821</td>
<td>16/817</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>70/4250</td>
<td>56/2527</td>
</tr>
<tr>
<td>75 - 300mg daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK-TIA (300mg)</td>
<td>8/811</td>
<td>16/817</td>
</tr>
<tr>
<td>TPT (75mg)</td>
<td>34/2545</td>
<td>55/2540</td>
</tr>
<tr>
<td>SALT (75mg)</td>
<td>7/676</td>
<td>10/684</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>49/4032</td>
<td>81/4041</td>
</tr>
<tr>
<td>TOTAL</td>
<td>119/8282</td>
<td>137/6568</td>
</tr>
</tbody>
</table>

Heterogeneity: p=0.84

Rothwell PM et al, Lancet 2010; 376:1741-50
Aspirin and Colorectal Cancer

• One would not expect short-term effects of aspirin on cancer incidence and mortality, unless the drug also interferes with cancer metastasis.
Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials

Peter M Rothwell, Jacqueline F Price, F Gerald R Fowkes, Alberto Zanchetti, Maria Carla Roncaglioni, Gianni Tognoni, Robert Lee, JIll F F Belch, Michelle Wilson, Ziyah Mehta, Tom W Meade

Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials

Peter M Rothwell, Michelle Wilson, Jacqueline F Price, Jill F F Belch, Tom W Meade, Ziyah Mehta

Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials

Annemijn M Algra, Peter M Rothwell
Cancer Incidence During Six Randomised Trials of Daily Low-Dose Aspirin in Primary Prevention of Vascular Events

<table>
<thead>
<tr>
<th>Trial Follow-up</th>
<th>Events/Subjects</th>
<th>Odds Ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2.9 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAA</td>
<td>50/1675</td>
<td>1.02</td>
<td>0.68-1.52</td>
</tr>
<tr>
<td>TPT</td>
<td>72/2545</td>
<td>0.92</td>
<td>0.66-1.27</td>
</tr>
<tr>
<td>POPADAD</td>
<td>23/638</td>
<td>1.00</td>
<td>0.56-1.80</td>
</tr>
<tr>
<td>JPAD</td>
<td>12/1262</td>
<td>1.01</td>
<td>0.45-2.26</td>
</tr>
<tr>
<td>HOT</td>
<td>219/9399</td>
<td>0.97</td>
<td>0.81-1.17</td>
</tr>
<tr>
<td>PPP</td>
<td>69/2226</td>
<td>1.29</td>
<td>0.90-1.84</td>
</tr>
<tr>
<td>TOTAL</td>
<td>445/17745</td>
<td>1.01</td>
<td>0.88-1.15</td>
</tr>
</tbody>
</table>

≥3 years			
AAA	116/1593	0.79	0.61-1.02
TPT	84/2431	0.74	0.56-0.99
POPADAD	22/532	0.58	0.34-1.00
JPAD	3/1095	0.44	0.11-1.69
HOT	75/9063	0.87	0.64-1.18
PPP	24/1689	0.71	0.42-1.21
TOTAL	324/16463	0.76	0.66-0.88

Rothwell et al, Lancet 21 March 2012
Five-Year Risk of Vascular Events and Major Bleeding Based on Primary Prevention Trials of Aspirin vs Placebo, and Hypothetical 10% Reduction in Cancer Incidence by Age and Sex

Females, age 50-59 years

<table>
<thead>
<tr>
<th></th>
<th>5-year risk (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleeding</td>
<td>A 0.3% C 0.2%</td>
</tr>
<tr>
<td>CVD</td>
<td>A 0.9% C 1.1%</td>
</tr>
<tr>
<td>Cancer</td>
<td>A 2.8% C 3.1%</td>
</tr>
</tbody>
</table>

Females, age 65-74 years

<table>
<thead>
<tr>
<th></th>
<th>5-year risk (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleeding</td>
<td>A 0.9% C 0.5%</td>
</tr>
<tr>
<td>CVD</td>
<td>A 3.9% C 4.5%</td>
</tr>
<tr>
<td>Cancer</td>
<td>A 5.8% C 6.5%</td>
</tr>
</tbody>
</table>

Five-Year Risk of Vascular Events and Major Bleeding Based on Primary Prevention Trials of Aspirin vs Placebo, and Hypothetical 10% Reduction in Cancer Incidence by Age and Sex

Males, age 50-59 years

- Non-fatal bleeding events
- Vascular death
- Non-fatal MI/stroke
- All cancers

<table>
<thead>
<tr>
<th></th>
<th>Bleeding</th>
<th>CVD</th>
<th>Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.5%</td>
<td>3.4%</td>
<td>3.1%</td>
</tr>
<tr>
<td>C</td>
<td>0.3%</td>
<td>3.9%</td>
<td>3.5%</td>
</tr>
</tbody>
</table>

Males, age 65-74 years

<table>
<thead>
<tr>
<th></th>
<th>Bleeding</th>
<th>CVD</th>
<th>Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.2%</td>
<td>8.0%</td>
<td>9.9%</td>
</tr>
<tr>
<td>C</td>
<td>0.7%</td>
<td>9.2%</td>
<td>11.0%</td>
</tr>
</tbody>
</table>

The Human Activated Platelet

- Neurodegeneration?
- Inflammation
- Amyloid β-peptide
- Prostanoids
- Vascular Occlusion
- Myocardial Infarction
- Ischemic Stroke
- Inflammatory cytokines & oxygen radicals
- Amyloid precursor peptide
- Colo-rectal carcinogenesis
- Growth Factors
- COX-2 Induction

Patrono, in Michelson Ed. *Platelets* 2013
Acknowledgments

University of Chieti
Giovanni Davì
Alfredo Dragani
Silvia Pascale
Paola Patrignani
Francesca Santilli

Catholic Univ School of Med, Rome
Giovanni Ghirlanda
Giovanna Petrucci
Dario Pitocco
Bianca Rocca

University of Oxford
Jane Armitage
Colin Baigent

American Cancer Soc
Michael Thun
Eric Jacobs

European Commission FP6, EICOSANOX
European Commission/EFPIA Innovative Medicines Initiative, SUMMIT