Rotablation-tips and tricks
Rotablator assembly procedure

Do not forget to turn on the flush system to full capacity (at least to 200 mmHg-pressure bag)

The weeping of saline through the seals of the advancer is normal
Always verify that the driveshaft is correctly locked and securely connected to the advancer.
The rotawire is normally covered with a whitish lubricant that should be removed when it accumulates in front of the burr, as the rotablator is loaded.
The rotablator wire

In cases where the rotawire cannot be advanced past the lesion a conventional angioplasty wire with an exchange microcatheter can be used. The rotawire can be advanced and positioned distally.

In cases where the rotawire cannot be advanced rapid rotation reduces the longitudinal friction.
The rotablator wire

Be careful of guidewire loops that may form in the aorta, as the rotablator is advanced along the guiding catheter.

These loops should be corrected carefully (pulling back the guiding catheter and rotating the wire).
The rotablator wire

Be careful of the guidewire tip.
The rotablator wire

When the brake is defeated the wire rotates and has to be fixed with the wireclip and the tip of the rotawire has to be watched on the screen.
Advancing the burr

Nonactivated burr advancement-reaching the platform segment
Advancing the burr

Activated burr advancement

To reach the platform segment, low-speed (100-120000 rpm) can be used to minimize ablation. The whole system can be advanced by defeating the brake and holding the wire.
Dynaglide is a control that sets the rotation speed of the rotablator at 50,000-90,000 rpm and is used for reducing friction when removing the device.

Dynaglide is not recommended for advancement because the rotational speed does not fall when resistance is met.
Advancing the burr

Relief of driveshaft tension

Relief of wire tension
Guidewire bias (divergence from the central axis of the vessel): the essential technique.

The guidewire placement plays an important role in the efficiency of debulking. Assess different guide catheters and possible positions of the guide catheter and the impact on the guidewire.
Guidewire bias (divergence from the central axis of the vessel): favorable bias.
Guidewire bias (divergence from the central axis of the vessel): unfavorable bias.
Guidewire bias (divergence from the central axis of the vessel): formation of neolumen - perforation.
Tortuosity and Rotablation: a dangerous combination.
Tortuosity and Rotablation: a dangerous combination.
Low pressure balloon inflation (>2.5 balloon) is an important part of the rotablation technique.

Localizes the areas of resistance.

1.75 mm burr

3 mm balloon
Low pressure balloon inflation is an important part of the rotablator technique.

In long lesions may be helpful in improving flow.

May seal perforations.
Trapped Rotablator: Kokeshi phenomenon
Rotational Atherectomy is "Technique-Sensitive"