Graft interventions

Tips και tricks

Thessaloniki 29/10/2015

Vaios Tzifos MD
Director Dep. of Interventional Cardiology
Henty Dunanyt HC
Athens (GR)
Vein Grafts Don’t Last as Long as Arterial Grafts
SVG Occlusion Rates from Surgical Studies

<table>
<thead>
<tr>
<th>Trial</th>
<th>One Year SVG occlusion rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRAGUE-4 On-pump</td>
<td>41% (per patient)</td>
</tr>
<tr>
<td>PRAGUE-4 Off-pump</td>
<td>51% (per patient off-pump)</td>
</tr>
<tr>
<td>PREVENT IV</td>
<td>41.7% (per patient); 26.6 (per SVG)</td>
</tr>
<tr>
<td>RIGOR</td>
<td>31% (per patient); 19% (per SVG)</td>
</tr>
<tr>
<td>ROOBY On-pump</td>
<td>28.7% (per patient on-pump)</td>
</tr>
<tr>
<td>ROOBY Off-pump</td>
<td>36.5% (per patient off-pump)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trial</th>
<th>5 yr SVG occlusion rates</th>
<th>10 yr SVG occlusion %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitzgibbon et al</td>
<td>25% (per SVG)</td>
<td>40% (per SVG)</td>
</tr>
<tr>
<td>Goldman et al</td>
<td>31% (per patient)</td>
<td>39% (per patient)</td>
</tr>
</tbody>
</table>
Pathobiology of SVG

Friable, degenerated atheromatous and thrombotic debris that develop when SVGs deteriorate

↓

Distal Debris Embolization ------- Chemical Embolization

↓

Slow or No- Reflow Phenomenon (10% to 15% of cases)

↓

Myocardial infarction (31% of patients)

↓

In – Hospital Mortality increases 10-fold

Distal embolization remains difficult to predict

Higher restenosis / occlusion rates than native coronaries
Predictors of 30-day and 1 Year MACE After SVG Intervention

- Lesion length
- SVG Degeneration score
- Larger plaque volume
- Female Sex
- Chronic renal insufficiency (serum creatinine >1.5 mg/dl)
- Degree of CK-MB elevation after SVG-PCI
- Disease progression at untreated intermediate lesions

Technical Aspects

• Antithrombotics
• Direct Stenting
• Covered stents
• DES
• Embolic Protection Devices
• Other Issues
Antithrombotics in SVG - PCI

- GpIIb/IIIa blockers:
 - No large RCTs
 - Subset analysis show no ↓ in periprocedural MI
 - One study showed better procedural success, but no impact on 30-day mortality

- Bivalirudin: One retrospective study showed lower enzyme elevation, NQMI & repeat procedures
 - In ACUITY trial: outcomes similar but minor bleeds were less
Direct stenting:
Potential benefit of trapping debris & less distal embolization

Registry data
– Less overall CK-MB elevations
– Fewer NSTEMIs with Direct stenting

• Predilatation is inevitable in some cases of chronic degenerated graft lesions which are hard and calcific
• Rotablation deemed overly risky & not recommended
Direct Stenting
Direct Stenting
Direct Stenting
Direct Stenting
SVG Intervention Techniques: BMS or Covered Stents

In principle should be associated with less embolizations & periprocedural complications

SYMBIOT
JoSTENT
AneurX
MGuard

Typically no advantage in terms of MACE rates and slightly higher restenosis/TVR rates.
Hence, no evidence to suggest covered stents are better
SVG Intervention Techniques BMS v/s DES

<table>
<thead>
<tr>
<th>Trial</th>
<th>SOS</th>
<th>RRISC</th>
<th>ISAR-</th>
<th>CABG</th>
</tr>
</thead>
<tbody>
<tr>
<td>(%)</td>
<td>PES</td>
<td>BMS</td>
<td>SES</td>
<td>BMS</td>
</tr>
<tr>
<td>MACE</td>
<td>37</td>
<td>49</td>
<td>15.8</td>
<td>29.7</td>
</tr>
<tr>
<td>Death</td>
<td>12</td>
<td>5</td>
<td>2.6</td>
<td>0</td>
</tr>
<tr>
<td>MI</td>
<td>15</td>
<td>31</td>
<td>2.6</td>
<td>0</td>
</tr>
<tr>
<td>TLR</td>
<td>5</td>
<td>28</td>
<td>5.3</td>
<td>21.6</td>
</tr>
</tbody>
</table>

- Most large RCT’s have 10-15% SVG cases
- Few small but well conducted RCT’s specific to SVGs
- DES Better Than BMS

One Year Outcomes
Similar results seen in 3 & 5 yr data where available

SOS: Stenting in Saphenous Vein Grafts
RRISC: Reduction of Restenosis in SVG’s with Cypher
Embolic Protection Devices

- Perhaps the best way to prevent distal embolization
 Proximal: Balloon occlusion
 Distal: Filters or balloon occlusion
Embolic Protection Devices
Treatment of Occluded SVGs

- Low successful recanalization
- High in-stent restenosis (68%)
- High target vessel revascularization (61%)
- Treat acute occlusions in the setting of myocardial infarction.
- Recanalize the native coronary artery if feasible
Treatment of Occluded SVGs
Treatment of Occluded SVGs
Treatment of Occluded SVGs
Treatment of Occluded SVGs
Treatment of Occluded SVGs in AMI
Other Issues

• Undersized stents said to reduce distal embolization
 – Theoretically higher risk of restenosis and stent thrombosis?

• Pharmacotherapy to prevent No-reflow
 – NTG/SNP/Adenosine/Verapamil

• Use of FFR – Similar hemodynamic information as native coronaries

• Borderline lesions: VELETI trial (30-60% stenoses treated with lower 1- & 3 yr MACE rates!)
Conclusions

• Venous graft lesions account for a 1-10% of PCIs

• Pathology of graft degeneration makes SVG PCI technically challenging

• Careful use of drugs and devices can minimize complications

• Small tips and tricks are important for high success rates
Thank you for your Attention