Sonoporation in 3D endothelialized microvascular networks

Ine De Cock, Eric Juang, Christina Keravnou, Sara Keller, Madison Gallagher, Richard Zong, Ying Zeng, Mike Averkiou

Department of Bioengineering, University of Washington, Seattle
Introduction

In vitro

1 MHz - 330 kPa - 10 cycles - multiple pulses

1 MHz - 1.6 MPa - 1000 cycles - single pulse
Introduction

In vitro
- Stationary microbubbles
- Direct microbubble-cell contact
- Cell monolayer on rigid cell culture plate

In vivo
- Microbubbles circulating in blood vessels
- Target cells in some cases beyond blood vessels
- Cells embedded in 3D structured soft tissue

→ need for more in vivo like cell models to study ultrasound induced drug delivery
3D microvascular networks

3D model mimicking *in vivo* vasculature allows for the study of:

- **sonoporation** and drug delivery to endothelial cells
- **drug extravasation** into tissue

in a more realistic environment

Zheng et al., *PNAS* 109, 9342-7, 2012

More information: poster C10 by Eric Juang
Experimental setup

US settings: 1 MHz, 0.4-1.4 MPa, 500-1000 cycles, 5%-20% DC - 5 sec exposure time

Microbubbles: DPPC/DSPE-PEG in 95/5 mol% ratio, C_4F_{10} core

Model drug:
- Sonoporation study: propidium iodide
- Extravasation study: 40 nm FITC-labeled polystyrene beads
Characterization acoustic field

1 MHz focused transducer (2 cm dia, 8 cm focus) used in the near field

Without microvascular network

With microvascular network

→ Distortion acoustic field
→ Reduction acoustic pressure
Perfusion networks with MBs

MB conc.: 2-5x10^8 MBs/mL

Syringe pump input flow rate: 8-10 μL/min

Microbubble velocity in channels:
(determined via microbubble tracking) 0.01-0.09 cm/s

Physiological capillary blood flow velocity: ~0.03 cm/s
Sonoporation endothelial cells

propidium iodide
endothelial cell
microbubble

blood vessel

% sonoporated cells

US

Hoechst
Propidium iodide

ROI

Frequency: 1 MHz
Exposure time: 5 sec

0.4 MPa - 1000 cycles - 20% DC, N=2
1.4 MPa - 500 cycles - 5% DC, N=3

Cell co
Sonoporation endothelial cells

Need for the use of targeted microbubbles?

Acoustic settings: 1 MHz - 0.4 MPa - 1000 cycles - 20% DC - 5 sec exposure time
Drug extravasation

Preliminary experiments:
Limited though significant extravasation observed

Acoustic settings: 1 MHz - 1.4 MPa - 500 cycles - 5% DC - 5 sec exposure time
Conclusions & future directions

We were able to

- create 3D endothelialized microvascular networks for the study of sonoporation
- perfuse microvessels with microbubbles
- induce sonoporation of endothelial cells under flow conditions
- perform initial studies on ultrasound-induced drug extravasation

In the future we plan to

- co-culture microvascular networks with pericytes and tumor cells
- induce angiogenesis
- study the combined effect of ultrasound and drugs in these highly specific networks
Acknowledgements