Optimized quantification of thyroid nodular vascularization from 3-D contrast-enhanced ultrasound images
Thyroid nodules occur in 50% of the worldwide population.

< 5% of Thyroid Nodules are Cancers

Incidence: 2.1% (Globocan, 2012)

Mortality: 0.5% (Globocan, 2012)
Thyroid Nodules: Diagnostic Procedure

Common Approach in Differential Diagnosis

Conventional B-Mode Ultrasound Imaging + Fine Needle Aspiration

Inconclusive diagnosis

25% of all cases

Overtreatment and unneeded surgery
Aim of this work

To represent the complete 3-D vascular network of thyroid nodules
To objectively characterize tumoral vascular pattern
To ease and support differential diagnosis
Volume Preprocessing and Filtering

Malignant Nodule

Benign Nodule

Original central Slide

Thresholding

Vessel Enhancement

Methods

Optimized quantification of thyroid nodular vascularization from 3-D contrast-enhanced ultrasound images
Vascular Skeleton and Centerline Extraction

Morphological information Flow intensity information

Malignant Nodule

Benign Nodule

Skeleton Centerlines

Guide

3-D Rendering

Methods

Optimized quantification of thyroid nodular vascularization from 3-D contrast-enhanced ultrasound images
Vascular Features Extraction

Tortuosity Measurements

Distance Metric (DM)

\[DM = \frac{L}{d} \]

Inflection Count Metric (ICM)

\[ICM = (\text{number of IP}) \times DM + 1 \]

Sum Of Angles Metric (SOAM)

Architectural Parameters

Number of Trees (NT)

Number of Branches (NB)

Vascular Volume Density (VVD)

Spatial Vascular Pattern (SVP) Perilesional/Intranodular

Optimized quantification of thyroid nodular vascularization from 3-D contrast-enhanced ultrasound images
Computation of Spatial Vascular Pattern

Perilesional Benign Tumor

Intranodular Malignant Tumor

Optimized quantification of thyroid nodular vascularization from 3-D contrast-enhanced ultrasound images

Methods
20 patients with solid solitary thyroid nodules

- 3 Males, age 43 ± 10 years
- 17 Females, age 46 ± 13 years

- 10 benign tumors (cytology)
- 10 malignant tumors (histopathology)

Analysis of Tumor Vasculature
Tortuosity Measurements: DM, ICM, SOAM
Architectural Parameters: NT, NB, VVD, SVP
Results

Statistical Analysis

<table>
<thead>
<tr>
<th>CEUS</th>
<th>Benign Tumors</th>
<th>Malignant Tumors</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM (a.u.)</td>
<td>13.91 ± 8.31</td>
<td>82.93 ± 49.38</td>
<td><< 0.05</td>
</tr>
<tr>
<td>ICM (a.u.)</td>
<td>35.78 ± 18.63</td>
<td>227.62 ± 93.97</td>
<td><< 0.05</td>
</tr>
<tr>
<td>SOAM (a.u.)</td>
<td>4.28 ± 3.19</td>
<td>26.51 ± 21.19</td>
<td><< 0.05</td>
</tr>
<tr>
<td>VVD (%)</td>
<td>30.30 ± 11.40</td>
<td>60.30 ± 7.11</td>
<td><< 0.05</td>
</tr>
<tr>
<td>NT (a.u.)</td>
<td>5.30 ± 1.34</td>
<td>8.40 ± 2.79</td>
<td><< 0.05</td>
</tr>
<tr>
<td>NB (a.u.)</td>
<td>18.30 ± 5.83</td>
<td>53.70 ± 17.72</td>
<td><< 0.05</td>
</tr>
<tr>
<td>SVP (a.u.)</td>
<td>6/10</td>
<td>10/10</td>
<td><< 0.05</td>
</tr>
<tr>
<td>Age (y)</td>
<td>46 ± 11</td>
<td>45 ± 14</td>
<td>> 0.05</td>
</tr>
</tbody>
</table>

Values expressed as mean ± SD

All vascular parameters are significantly higher for malignant tumors

Optimized quantification of thyroid nodular vascularization from 3-D contrast-enhanced ultrasound images
Conclusion and Future Developments

Tumor vasculature can be extracted from 3-D CEUS Volume

A minimum set of Vascular Parameters can differentiate benign from malignant nodules

Vasculature from 3-D CEUS images can be used in early differential diagnosis

Prostate Tumor Localization and Characterization

- CEUS
- Vessellness Filtering
- Histological Label
- ICM map
- NT map
Optimized quantification of thyroid nodular vascularization from 3-D contrast-enhanced ultrasound images

Cristina Caresio
cristina.caresio@polito.it