Transcranial electrical stimulation (tES): basics, mechanisms and its application in neurodegenerative diseases

MA Nitsche
Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
Physiological correlates of psychological and behavioural processes

- **stimuli**
 - visual
 - auditory
 - somatosensory
 - gustatory
 - olfactory
 - vegetative

- **perception**
- **behaviour**
- **motor activity**

- **cognition, motivation, emotion**

Modulation of cortical activity, and excitability in humans

Activity
- TMS
- rTMS
- PAS

Plasticity
- tDCS

Oscillations
- tACS
- tRNS
Primary action of DC-stimulation: modulation of resting membrane potential

Electrode positions:
- m = motor cortex;
- prm = premotor cortex;
- pom = post-motor cortex;
- oc = occipital;
- cS = contralateral forehead;
- cm = kontralateral motor cortex

MEP Amplitude with/without tDCS

- anodal stimulation
- cathodal stimulation

Rahman et al. 2013

AP threshold
tDCS in humans
Polarity-dependent excitability-modulation during tDCS

Electrode positions:
- m = motor cortex
- prm = premotor cortex
- pom = post-motor cortex
- oc = occipital
- cS = contralateral forehead
- cm = kontralateral motor cortex

Nitsche & Paulus 2000
After-effects of tDCS - plasticity
Conclusion 1

- Non-invasive brain stimulation allows to alter cortical activity, and excitability, including brain oscillations.

- Neuroplastic after-effects are accomplished by tDCS.

- These after-effects depend on the glutamatergic system.
Modulation of brain functions by electrical stimulation
Exploration of cognitive processes via tDCS – motor learning

Serial reaction time task (SRTT)

12 stimuli, 10 times repetition per block

Procedure
- Sequence
- Random order

Effect of sequence learning

Task routine
Motor learning – involved areas

Initial Learning

Honda et al. Brain 1998

Consolidation

Honda et al. Brain 1998

tDCS over M1

Premotor tDCS

Reaktionszeiten / Baseline
Working memory – performance alterations by tDCS

Fregni et al. Exp Brain Res 2005, Mannie et al. 2010
Working memory – network synchronisation improves performance

Polania et al. Curr Biology 2012
Conclusion II

- tES alters cognitive processes in healthy humans
- tDCS-induced neuroplasticity improves learning
- tDCS and tACS improve working memory performance
Application of tES in Alzheimer’s disease
Improvement of memory

- Double-blinded randomized, 15 patients
- Bilateral temporal, return electrode extracephalic
- 15 min tDCS, 1.5 mA
- Single session

Ferrucci et al. 2008
Improvement of memory

- Case report
- Anode T3, cathode Fp2
- 30 min tDCS twice daily
- tDCS over 6 consecutive days

<table>
<thead>
<tr>
<th>Test</th>
<th>Baseline Raw score/scaled score</th>
<th>Post-test 1 Raw score/scaled score</th>
<th>Post-test 2 Raw score/scaled score</th>
<th>Improvement (%) Baseline to Post-test 2</th>
<th>RCI Baseline to Post-test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVLT Immediate Recall</td>
<td>21/15</td>
<td>31/37</td>
<td>27/35</td>
<td>28.57</td>
<td>1.44</td>
</tr>
<tr>
<td>CVLT-II Delayed Recall</td>
<td>4/-1.5</td>
<td>7/-1</td>
<td>7/-1</td>
<td>75.00</td>
<td>1.84</td>
</tr>
<tr>
<td>CVLT-II Recognition Total Hits</td>
<td>15/0.5</td>
<td>14/0</td>
<td>14/0</td>
<td>-6.67</td>
<td>-0.77</td>
</tr>
<tr>
<td>CVLT-II Recognition False Positive</td>
<td>15/4</td>
<td>15/4</td>
<td>15/4</td>
<td>0.00</td>
<td>0.04</td>
</tr>
<tr>
<td>D-KEFS Word Fluency</td>
<td>22/6</td>
<td>19/5</td>
<td>19/5</td>
<td>-13.64</td>
<td>-0.62</td>
</tr>
<tr>
<td>Phonemic</td>
<td>11/1</td>
<td>14/1</td>
<td>12/1</td>
<td>9.09</td>
<td>0.16</td>
</tr>
<tr>
<td>D-KEFS Word-Fluency Categorical</td>
<td>9/6</td>
<td>7/4</td>
<td>8/6</td>
<td>-11.11</td>
<td>0.00</td>
</tr>
<tr>
<td>WMS Attention Span</td>
<td>93</td>
<td>137</td>
<td>78</td>
<td>-16.13</td>
<td>-1.2</td>
</tr>
<tr>
<td>TMT A</td>
<td>19</td>
<td>22</td>
<td>27</td>
<td>42.11</td>
<td></td>
</tr>
<tr>
<td>MMSE</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-33.3</td>
<td></td>
</tr>
<tr>
<td>Clock-Drawing Test</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>GDS</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Richard-Campbell Sleep Questionnaire</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Note: Results from the California Verbal Learning Test II (CVLT-II) Immediate Recall are displayed as a T-score (normative mean = 50, SD = 10). CVLT-II Delayed Recall and CVLT-II Recognition are shown as Z-scores (normative mean = 0, SD = 1). The maximum score on the Clock-Drawing Test is five, and the highest score on the Mini Mental Status Exam (MMSE) is 30. The results of the Trail Making Test A (TMT A) are displayed in seconds. The cut-off score for GDS is >11. The Reliable Change Index (RCI) is a measure of statistical reliable change, in which ±1.645 is the commonly used cut-off score of clinical significance [7]. For the MMSE and Clock-Drawing, RCI was not estimated because of the lack of test-retest coefficients.
Improvement of memory

- Double-blinded randomized, 15 patients
- Anodes bilateral temporal, return electrode extracephalic
- 30 min tDCS once daily, 2 mA
- tDCS over 5 consecutive days
- Visual recognition task
General Cognitive functioning

- 34 patients
- All under memantine
- Parallel groups
- Anodal/cathodal/sham left DLPFC
- 25 min tDCS once daily
- tDCS over 10 consecutive workdays

Khedr et al. 2014
Conclusion III

- tDCS might have therapeutic potential in neurodegenerative diseases
- Results of some pilot studies are promising
- Knowledge about optimized protocols, and effect of tACS is missing
- RCTs are missing
- Currently not ready for clinical routine practice
Many thanks for your attention!