Phakic IOLs

Moschou Konstantinos MD
Diathlasis Day Care Unit

14th Ophthalmology Congress of OETHAMBA
July 10-11, 2017
Ilio Mare Hotel
Thassos, Greece
Introduction

Artificial lenses implanted in the anterior or posterior chamber of the eye in the presence of the natural crystalline lens to correct refractive errors.
Introduction

- Phakic IOLs: an evolving technique in the field of refractive surgery for the correction of moderate to high refractive errors.

- Patients with high myopia (above -10 diopters) constitute only about 2% of the myopic population but 13-15% of patients presenting for refractive surgery belong to this group.
Introduction

Lasik is justifiably still the most widely practiced modality of refractive surgery because of:

- High level of comfort
- Quick recovery
- Stable predictable results
- Ability to perform bilateral treatment in one sitting
Introduction

But when it comes to higher grades of refractive error it has the following limitations:

- Significant residual error
- Loss of best spectacle corrected visual acuity
- Risk of iatrogenic keratectasia when excessive ablation done or residual bed is too thin
- Induction of tear film abnormalities
- Induction of higher order aberrations, which leads to poor contrast sensitivity
- Limitation of night vision and diminished quality of vision
Advantages of Phakic IOLS in High Refractive Errors

- Preservation of architecture of cornea
- Predictable refractive results
- Preservation of accommodation
- Predictable healing
- Rapid visual recovery
Advantages of Phakic IOLS in High Refractive Errors

- Stable post-operative refraction
- Reversible and adjustable
- Cheap, no costly equipment like a lasik unit is necessary.
- The technique of implanting a phakic IOL is similar in many ways to phacoemulsification and a good anterior segment surgeon can easily incorporate it is his practice.
Indication for Phakic IOLs

Any refractive error which is unsuitable for LVC could be considered for phakic IOLs

- Myopia beyond -10D
- Hyperopia beyond +4D
- Initial corneal thickness < 480 microns
- Residual bed after LASIK is likely to be < 300 microns
History

- **1889**
 Clear lens extraction for the correction of myopia
 Fukula in Austria/Germany: FUKULA SURGERY
 Abandoned due to complications

- **1950s**
 Correcting myopia by inserting a concave lens into Phakic eye

- **1988**
 Baikoff: anterior chamber angle fixed IOL

- **Mid 1980s**
 Posterior chamber phakic IOLs: Fyodorov

- **1991**
 Artisan - Worst iris claw lens
Phakic IOL - Options

There are primarily three sites of fixation

- **Anterior chamber angle – supported**

 e.g. BAIKOFF, NUVITA lenses, CACHET

- **Anterior chamber iris – fixated**

 e.g. VERISYSE

- **Posterior chamber IOLs**

 e.g. STAAR ICL (Implantable Contact Lens) and PRL (Phakic Refractive Lens) - ICL is more widely used
General criteria for implanting Phakic IOLs

- **Stable refraction** (less than 0.5 D change for 6 months)
- **Clear crystalline lens**
- **Ametropia not suitable/appropriate** for excimer laser surgery
- **Unsatisfactory vision with/intolerance** of contact lenses or spectacles
- **Anterior chamber depth** greater or equal to 3.2 mm for Verisyse (iris claw lens)* and angle supported PIOLs
 2.8 mm for posterior chamber PIOLs*
- **A minimum endothelial cell density** of*
 - ≥ 3500 cells/mm² at 21 years of age
 - ≥ 2800 cells/mm² at 31 years of age
 - ≥ 2200 cells/mm² at 41 years of age
 - ≥ 2000 cells/mm² at 45 years of age or more
- **No ocular pathology** (corneal disorders, glaucoma, uveitis, maculopathy, etc)

* According to FDA
Advantages & Disadvantages of Phakic IOLs

<table>
<thead>
<tr>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential to treat a large range of myopic, hyperopic and astigmatism refractive error.</td>
<td>Potential risk of an intraocular procedure (e.g. endophthalmitis).</td>
</tr>
<tr>
<td>Allows the crystalline lens to retain its function preserving accommodation.</td>
<td>Nonfoldable models require large incision that may result in high postoperative astigmatism.</td>
</tr>
<tr>
<td>Excellent visual and refractive results (induces less coma and spherical aberration than LASIK)</td>
<td>Highly ametropic patients may require additional photorefractive surgery (Bioptics) for fine tuning the refractive outcome.</td>
</tr>
</tbody>
</table>
Advantages & Disadvantages of Phakic IOLs

<table>
<thead>
<tr>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removable and exchangeable</td>
<td>May cause irreversible damage (i.e. endothelial cell loss, cataract formation, glaucomatous optic neuropathy)</td>
</tr>
<tr>
<td>Frequently improves BSCVA in myopic eyes by eliminating minification effect of glasses</td>
<td>Implantation in hyperopic patients can be followed by loss of BSCVA due to loss of magnification effect of glasses.</td>
</tr>
<tr>
<td>Results are predictable and stable</td>
<td>Other complications are common: pupil ovalization, induced astigmatism, chronic uveitis, pupillary block, pigment dispersion.</td>
</tr>
</tbody>
</table>
AC Angle supported Phakic IOL
Lowered vaulting to 20 degree
Thinned optic edge
Increased distance from endothelium 0.6 mm

New rigid PMMA lens
Total diameter – 5mm
Real optic diameter 4.5mm
Edge decreased by 20%
Other models of angle supported PIOLs

Two rigid PMMA devices:
- ZSAL-4
- Phakic 6

Three foldable hydrophilic acrylic IOLs:
- Vivarte
- I-CARE
- Acrysof Cachet

One foldable “two parts” silicone/PMMA IOL:
- Kelman-duet
Rigid PMMA angle-supported ZSAL-4 lens.

Rigid PMMA angle-supported Phakic 6 lens.
Foldable hydrophilic acrylic angle-supported Vivarte lens.
Foldable hydrophilic acrylic angle-supported I-CARE lens (A and B).

Ultrasound biomicroscopy (UBM) showing the position of the haptic in the anterior chamber angle (C).
Surgical Procedure

- Topical pilocarpine
- Topical or peribulbar anaesthesia
- Incision
- Cohesive viscoelastic
- Lens is introduced, footplate is inserted in the iridocorneal angle, second haptic is then placed, lens is then rotated in place
- Periphery iridectomy done
- Incision is closed
Complications

- Haloes and glare
- Pupillary ovalization
- Endothelial damage
- Elevation of intraocular pressure
- Uveitis
- Cataract
- Retinal detachment
- Rarely – urrets – zavalia syndrome, malignant glaucoma, endophthalmitis
Iris-fixated Phakic IOL
Iris-fixated Phakic IOL

Midperipheral fixation by a claw mechanism

Artisan/Verysise lens. Detail of the mid-peripheral iris stroma enclavated by the haptic claw.
Iris-fixated Verisyse lens in situ

Originally designed by Jan worst and named Lobster claw lenses and subsequently renamed as ARTISAN lenses and now marketed as VERISYSE.
Verisyse - Iris Clip Lenses

- Made up of PMMA and have an overall diameter of 8.5mm
- In the power range -3D to -15.5D - available in 6mm optic size
- -15.5D to -23.50D and +1D to +12D – available in 5mm optic size
- Toric versions are also available now
- Artiflex – are foldable version with silicon optics and PMMA haptics – (introduced through a 3mm incision)
In September 2004, the FDA approved the first phakic IOL.

The Verisyse (AMO/Optotec, USA Inc.) was approved for:

- Myopia ranging from -5 to -20 D
- Astigmatism ≤ 2.5 D
- Adults 21 years of age or older
- With anterior chamber depth (ACD) of 3.2 mm or greater and Shaffer grade II as determined by Gonioscopy.
Artisan/Verysise lens
{FDA-approved models}

(A) 204 (6.0 mm optic) and
(B) 206 (5.0mm optic) for
the correction of myopia.
(A) Foldable iris-fixated Artiflex lens.
(B) Foldable iris-fixated Artiflex lens.
Indications of Iris Claw lens

- Treatment of refractive errors after penetrating keratoplasty
- Treatment of Anisometropic Amblyopia in children
- Secondary implantation for Aphakia correction
- Treatment of refractive errors in patients with keratoconus
- Correction of progressive high myopia in pseudophakic children
- Postoperative anisometropia in unilateral cataract patients with bilateral high myopia
Procedure

- Topical pilocarpine
- Topical / peribulbar anaesthesia
- Incision (corneal, limbal or scleral tunnel incision)
- Cohesive viscoelastics
- IOL insertion
- Enclavation done
- Closure of incision
Complications

- Glare and haloes
- Anterior chamber inflammation/pigment dispersion
- Endothelial cell loss
- Glaucoma
- Iris atrophy or dislocation
- Cataract
- Hyphema, retinal detachment rarely
Posterior Chamber Phakic IOL
Posterior Chamber Phakic IOL

- Placed in the posterior chamber just in front of the normal crystalline lenses.

- Materials:
 - Silicone: PRL
 - Collamer: ICL
Properties desired in the IOL are:

- Allow permeability of nutrients
- Circulation of aqueous humor
- Not cause crystalline lens or zonular trauma
Posterior Chamber Phakic IOL

- Available in powers from -2D to -20D and +1D to +10D.
- The toric version can correct up to 6D of astigmatism.
- Extremely thin with optic centre measuring in thickness about 50 microns and the haptics 500-600 microns.
- Overall diameter varies between 11.5 to 13mm.
- Sizing depends on the white-to-white measurement.
In December 2005, second phakic IOL was approved by FDA.

The Visian ICL (Implantable Collamer Lens)

- Approved for correction of –
 - Myopia ranging from -3 to -20 D
 - Astigmatism <\= 2.5D
 - Adults 21-45 years of age with ACD of 3.0 mm or greater and Shaffer grade II as determined by gonioscopy.
Thank you