CURRENT GUIDELINES FOR SEPSIS MANAGEMENT

Evangelos J. Giamarellos-Bourboulis, MD, PhD

Associate Professor of Medicine
4th Department of Internal Medicine,
National and Kapodistrian University of Athens,
Medical School, Greece

Guest Professor, Center for Sepsis Control and Care,
Jena University Hospital, Germany
CONFLICT OF INTEREST DISCLOSURE

- None for this presentation
- Honoraria (paid to the University of Athens): AbbVie USA, Astellas Greece, Biotest Germany, Brahms GmbH, InflaRx GmbH Germany, MSD Greece, Novartis Greece SA, Pfizer Greece
- Consultant: Astellas Greece, InflaRx GmbH, Germany, Roche CH, Xbiotech USA
- Independent educational grants: AbbVie USA, Abbott CH, Axis Shield, UK, Inflammatix USA, InflaRx GmbH Germany, Xbiotech USA
- European Grants: FrameWork 7 program HemoSpec, Horizon2020 Marie-Curie Grant European Sepsis Academy.
PILLARS OF SEPSIS MANAGEMENT

Haemodynamic therapy

Source control

Antimicrobials

ADJUNCTIVE THERAPY

EARLY START OF ANTIMICROBIALS: MAIN GOAL
A life-threatening organ dysfunction caused by a dysregulated host response to infection.
Sequential Organ Failure Assessment (SOFA)

<table>
<thead>
<tr>
<th>SOFA score</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>pO₂/FiO₂</td>
<td>≥400</td>
<td><400</td>
<td><300</td>
<td><200</td>
<td><100</td>
</tr>
<tr>
<td>Platelets</td>
<td>≥150</td>
<td><150</td>
<td><100</td>
<td><50</td>
<td><20</td>
</tr>
<tr>
<td>(x10⁢³ mm³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilirubin (mg/dl)</td>
<td><1.2</td>
<td>1.2-1.9</td>
<td>2.0-5.9</td>
<td>6.0-11.9</td>
<td>≥12.0</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>MAP ≥70mmHg</td>
<td>MAP <70mmHg</td>
<td><5*</td>
<td>≤1**</td>
<td>>1**</td>
</tr>
<tr>
<td>Glasgow Coma Scale</td>
<td>15</td>
<td>13-14</td>
<td>10-12</td>
<td>6-9</td>
<td><6</td>
</tr>
<tr>
<td>Creatinine (mg/dl) (or urine/day)</td>
<td><1.0</td>
<td>1.2-1.9</td>
<td>2.0-3.4</td>
<td>3.5-4.9 (<500)</td>
<td>≥5.0 (<200)</td>
</tr>
</tbody>
</table>

*μg/kg/min of dopamine

**μg/kg/min of noerpinephrine
INFECTION SUSPICION

qSOFA (quick SOFA) ≥2

EVALUATE ORGAN DYSFUNCTION

SOFA ≥2 admitted in the ER or increase from the baseline

SEPSIS

Despite fluid resuscitation
- Mean arterial pressure <65mmHg
- Lactate ≥2 mmol/l
- NEED for vasopressors

SEPTIC SHOCK

qSOFA
- Altered mental status
- ≥22 breaths/minute
- Systolic blood pressure <100 mmHg

ER: emergency department
THE OTHER READ-OUT

Survival
Cumulative effective antimicrobial therapy

<table>
<thead>
<tr>
<th>Time (hours) from start of hypotension</th>
<th>% patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.99</td>
<td>100</td>
</tr>
<tr>
<td>1-1.99</td>
<td>80</td>
</tr>
<tr>
<td>2-2.99</td>
<td>60</td>
</tr>
<tr>
<td>3-3.99</td>
<td>40</td>
</tr>
<tr>
<td>4-4.99</td>
<td>20</td>
</tr>
<tr>
<td>5-5.99</td>
<td>0</td>
</tr>
<tr>
<td>6-6.99</td>
<td></td>
</tr>
</tbody>
</table>
RESISTANCE PATTERNS: ER ADMISSION
(Koupetori M, et al. BMC Infect Dis 2014; 14: 272)

*\(p<0.05\) between the two periods
Epidemiology as a Guiding Tool

(Koupetori M, et al. *BMC Infect Dis* 2014; 14: 272)

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>OR</th>
<th>95%CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>APACHE II > 13</td>
<td>1.57</td>
<td>0.79-3.09</td>
<td>0.192</td>
</tr>
<tr>
<td>History of COPD</td>
<td>2.61</td>
<td>0.78-8.77</td>
<td>0.120</td>
</tr>
<tr>
<td>Pigtail ureter catheterization</td>
<td>4.67</td>
<td>0.94-23.23</td>
<td>0.060</td>
</tr>
<tr>
<td>Chronic hemodialysis</td>
<td>7.16</td>
<td>1.93-26.54</td>
<td>0.004</td>
</tr>
<tr>
<td>Intake of antibiotics ≤ 3 months</td>
<td>2.48</td>
<td>1.34-4.57</td>
<td>0.004</td>
</tr>
<tr>
<td>Residence in long-term care facility</td>
<td>4.62</td>
<td>2.12-10.10</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
A MULTI-CENTER SIMULATION: THE HELLENIC SEPSIS STUDY GROUP
EMPIRICAL ANTIMICROBIALS OUTSIDE THE ICU WITH SOFA ≤7
- 3rd gen. cephalosporin +/- metronidazole
- Piperacillin/tazobactam
- Carbapenem

EMPIRICAL ANTIMICROBIALS OUTSIDE THE ICU WITH SOFA >8
- Piperacillin/tazobactam +/- colistin +/- glycopeptide
- Carbapenem +/- colistin +/- glycopeptide
INCREASE T>MIC FOR B-LACTAMS

INCREASE THE DOSE

1g q8h
2g q8h

↑↑↑ 25%

MIC

PROLONG INFUSION

1g 0.5H
2g 3H

↑↑↑ 25%

MIC

1g q8h (0.5H)
2g q8h (3H)

↑↑↑ 50%

MIC

BOTH!!!
Colistin methasulfonate is an inactive pro-drug
- Hydrolyzed into active colistin A and colistin B
- MIC_{breakpoint} \leq 2 \mu g/ml (\leq 4 \mu g/ml for P.aeruginosa)
- 3MU (240mg) q8h in 18 critically ill patients

![Serum concentrations after 1st dose](image1)

![Serum concentrations after 4th dose (24h)](image2)
NEED FOR INITIAL LOADING DOSE OF 9MU
UPDATED DOSING REGIMENS TO ACHIEVE PLASMA COLISTIN C_{ss} 2 mg/L

9 million units loading dose to all patients

<table>
<thead>
<tr>
<th>CrCl (ml/min)</th>
<th>Daily dose (millions divided into two)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.95</td>
</tr>
<tr>
<td>5 to <10</td>
<td>4.40</td>
</tr>
<tr>
<td>10 to <20</td>
<td>4.85</td>
</tr>
<tr>
<td>20 to <30</td>
<td>5.30</td>
</tr>
<tr>
<td>30 to <40</td>
<td>5.90</td>
</tr>
<tr>
<td>40 to <50</td>
<td>6.65</td>
</tr>
<tr>
<td>50 to <60</td>
<td>7.40</td>
</tr>
<tr>
<td>60 to <70</td>
<td>8.35</td>
</tr>
<tr>
<td>70 to <80</td>
<td>9.00</td>
</tr>
<tr>
<td>80 to <90</td>
<td>10.3</td>
</tr>
<tr>
<td>≥90</td>
<td>10.9</td>
</tr>
</tbody>
</table>
OPTIONS FOR ADJUNCTIVE THERAPIES IN SEVERE INFECTIONS: SSC 2016

INTERVENTION

- Low-dose hydrocortisone replacement in septic shock
- Treatment with IV Igs

COMMENT

- Only if hemodynamic stability cannot be achieved (weak recommendation)
- AGAINST preparations of only IgGs
- Weak recommendation of IgM-enriched preparations

THE FRENCH STUDY *(JAMA 2002; 288: 862)*
(START hydrocortisone replacement 3-8 h from onset of hypotension)

(START hydrocortisone replacement <72 h from onset of hypotension)
THE APPROACH OF THE HELLENIC SEPSIS STUDY GROUP (1)

Late: >9hrs from vasopressors (n= 124)
Early: <9hrs from vasopressors (n= 46)

log-rank: 5.553
p: 0.018
THE APPROACH OF THE HELLENIC SEPSIS STUDY GROUP (2)

Late: >9hrs from vasopressors (n= 124)
Early: <9hrs from vasopressors (n= 46)

log-rank: 18.248
p: 0.000019
SEVERE SEPSIS TO SEPTIC SHOCK: 28-DAY MORTALITY

AUC_{SURVIVORS}: 350.1 mg.day/dl
AUC_{NON-SURVIVORS}: 200.6 mg.day/dl
p: 0.037

ARE THERE ALARMING Ig LEVELS? IMMUNOSCORING

- IgG1 ≤300 mg/dl
- IgM ≤ 35 mg/dl
- IgA ≤150 mg/dl

- IgG1 >300 mg/dl
- IgM >35 mg/dl
- IgA >150 mg/dl

![Graph showing cumulative survival over time with IgG1 ≤300 mg/dl, IgM ≤35 mg/dl, and IgA ≤150 mg/dl associated with higher survival compared to IgG1 >300 mg/dl, IgM >35 mg/dl, and IgA >150 mg/dl with a significance level of P = 0.001.](image-url)
META-ANALYSIS OF CLINICAL TRIALS

IgM-enriched IV polyvalent (IgGAM) (12% IgM, 12% IgA, 76% IgG)

RR: 0.66 ↓34% risk for death

IgG IV polyvalent

RR: 0.85 ↓15% risk for death

RR: relative risk
TOTAL NUMBER OF PATIENTS WITH CLINICAL DATA IN THE REGISTRY = 5,143

Step 1: ICU-ACQUIRED INFECTIONS = 1,299

COMPARATORS (from the same hospitals) = 1,077
- Excluded from matching (n=2 neutropenia)

EXCLUDED = 132
- Lack of microbiology = 72
- Incomplete data = 33
- Catheter-related infections = 20
- Neutropenia = 4
- Gram-positive infections = 2
- Primary immunodeficiency = 1

ANALYZED = 100

Step 2: Severe sepsis/Shock = 622

Step 3: MDR Gram-negative = 213

Step 4: Case control matching
- 1:1 matching for sepsis severity
- 1:1 matching for appropriateness of empirical antimicrobial treatment
- Fuzzy matching for source of infection
- Fuzzy matching for CCI

ANALYZED = 100

IgGAM = 232 (ALL Severe sepsis/Shock)

EXCLUDED = 132

ANALYZED = 100

MDR: multidrug-resistant

MATCHED BASELINE DEMOGRAPHICS

<table>
<thead>
<tr>
<th></th>
<th>Comparators (n= 100)</th>
<th>IgGAM (n= 100)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>54.2 ± 18.4</td>
<td>51.9 ± 18.6</td>
<td>0.399</td>
</tr>
<tr>
<td>Severe sepsis/shock</td>
<td>14/86</td>
<td>14/86</td>
<td>1.000</td>
</tr>
<tr>
<td>APACHE II score</td>
<td>20.7 ± 6.6</td>
<td>19.6 ± 6.9</td>
<td>0.229</td>
</tr>
<tr>
<td>SOFA score</td>
<td>8.9 ± 3.3</td>
<td>10.2 ± 3.3</td>
<td>0.013</td>
</tr>
<tr>
<td>Appropriateness of empirically prescribed antimicrobials</td>
<td>51/49</td>
<td>51/49</td>
<td>1.000</td>
</tr>
<tr>
<td>Primary bacteremia</td>
<td>24</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Ventilator-associated pneumonia</td>
<td>56</td>
<td>63</td>
<td>0.730</td>
</tr>
<tr>
<td>Ventilator-associated pneumonia + bacteremia</td>
<td>18</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Intrabdominal + bacteremia</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Charlson’s comorbidity index</td>
<td>2.86 ± 2.68</td>
<td>2.67 ± 2.43</td>
<td>0.601</td>
</tr>
</tbody>
</table>

PRIMARY ENDPOINT: 28-DAY MORTALITY

Mortality = 39%

Mortality = 58%

OR\textsubscript{death} under IgGAM

0.37 (95%Cls: 0.18-0.76)

log-rank: 6.88

p: 0.009
SECONDARY ENDPOINT 2: EFFECT ON TIME TO BREAKTHROUGH BACTEREMIA*

*A new episode of bloodstream infection in a patient having sterile blood cultures for ≥72 hours.

log-rank: 17.48
p< 0.0001
• Addition of a macrolide for patients with septic shock after *Streptococcus pneumoniae* bacteremia

• Weak recommendation, low quality of evidence
META-ANALYSIS OF 16 OBSERVATIONAL STUDIES
PROSPECTIVE, RANDOMIZED APPROACH

- Community-acquired pneumonia
- Cefuroxime or amoxycillin/clavulanate
- Clarithromycin 500mg bid iv or po
- Monotherapy β-lactam / β-lactam + clarithromycin combination
- Primary endpoint: patients not reaching clinical stability on day 7
- Powered for non-inferiority
BENEFITS OF ADDING CLARITHROMYCIN

Monotherapy (n= 291) Combination (n= 289)

<table>
<thead>
<tr>
<th></th>
<th>% of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instability Day 7</td>
<td>41.2%</td>
</tr>
<tr>
<td></td>
<td>33.6%</td>
</tr>
<tr>
<td>30-day readmission</td>
<td>7.9%</td>
</tr>
<tr>
<td></td>
<td>3.1%</td>
</tr>
</tbody>
</table>

p: 0.070

p: 0.010
200 patients with VAP + Sepsis/Severe Sepsis/Septic Shock (ACCP/SCCM 1992)

100 iv PLACEBO + ANTIBIOTICS**

100 iv CLARITHROMYCIN* + ANTIBIOTICS**

*1000mg iv daily within one hour x 3 days

**Standard of Care
VAP: ventilator-associated pneumonia

www.clinicaltrials.gov (NCT 00297674)
EFFECT ON RESOLUTION OF VAP

- Placebo
- Clarithromycin

% resolved cases

0% 20% 40% 60% 80%

Days

0 4 8 12 16 20 24 28

50%: 10 days
50%: 15.5 days

p: 0.011

www.clinicaltrials.gov (NCT 00297674)
FINAL OUTCOME!!!

log-rank: 4.278
p: 0.043

Survival (%)

57%
40%

MORTALITY DAYS 29-90 (%)
p: 0.001

Placebo
Clarithromycin
REVERSAL OF IMMUNOPARALYSIS

- IL-10/TNFα
 - No Presence of MODS and septic shock: Placebo 10, Clarithromycin 10
 - Yes: Placebo 20, Clarithromycin 30
 - p: 0.040

- IL-6 production by LPS-stimulated monocytes
 - No Presence of MODS and septic shock: Placebo 700, Clarithromycin 900
 - Yes: Placebo 1400, Clarithromycin 2100
 - p: 0.015

- %CD86 on monocytes
 - No Presence of MODS and septic shock: Placebo 50, Clarithromycin 70
 - Yes: Placebo 25, Clarithromycin 35
 - p: 0.024
HOW TO DEAL WITH IN 2018?

• Early broad-spectrum antimicrobials
• Decision based on epidemiology and SOFA scoring
• Intense “work-up” for hemodynamic stability (fluids + vasopressors)
• Adjunctive approaches