Ceftaroline:
A new cephalosporin for the treatment of cSSTIs and CAP

Nikolaos V. Sipsas, MD, FIDSA

Associate Professor
Internal Medicine – Infectious Diseases
General Hospital of Athens “Laiko”,
Medical School, National and kapodistrian University of Athens
Circular ΕΟΦ 81867/19.11.2012
Conflict of Interest (2013-2018)

• Speakers honoraria, research and travel grants from:
 • Astellas
 • Gilead
 • GSK
 • Janssen
 • MSD
 • Pfizer
By 2050: Antimicrobial resistant infections the leading cause of death

By 2050
- 10 million people will die every year from infections by MDR pathogens
- The infections by MDR pathogens will cost the global economy more than $100 million
“10 x 20” Initiative
New antibiotics

• Eight new antibiotics were approved by the FDA between January 2010 and December 2015:
 • ceftaroline,
 • fidaxomicin,
 • bedaquiline,
 • dalbavancin,
 • tedizolid,
 • oritavancin,
 • ceftolozane-tazobactam
 • ceftazidime-avibactam.

Outline

• Mode of action - Profile
• Spectrum
• Potential for induction of resistance
• Pharmakokinetics
• Safety profile
• Drug-drug interactions
Mode of action - Profile
What is ceftaroline fosamil?

• Parenteral, **bactericidal**, advanced/5\(^{th}\) generation cephalosporin

• High affinity to specific penicillin-binding proteins:
 - PBP-2b and PBP-2x, associated with β-lactam resistance in *Streptococcus pneumoniae*
 - PBP-2a associated with resistant MRSA\(^2\)

• Only available β-lactam with **anti-MRSA activity** for cSSTI, along with activity against other commonly encountered Gram-positive and Gram-negative bacteria\(^1\)

• CLSI designates ceftaroline as a member of a new class of β-lactam antibiotic, ‘**cephalosporin with MRSA activity**’

Ceftaroline: Structure activity relationships\(^3\)

First MRSA-active β-lactam with extended spectrum against Gram-positive and Gram-negative bacteria commonly associated with cSSTI and CAP

CLSI, Clinical and Laboratory Standards Institute; IDSA, Infectious Diseases Society of America; MRSA, methicillin-resistant *Staphylococcus aureus*

Spectrum

In vitro – Clinical data
In Vitro Activity

<table>
<thead>
<tr>
<th>Bacteria (No. of isolates)</th>
<th>MIC (µg/mL)</th>
<th>MIC<sub>50</sub></th>
<th>MIC<sub>90</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus (MS) (1,554)</td>
<td>≤0.008-1</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>S. aureus (MR) (1,237)</td>
<td>0.25-2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. aureus (VISA and hVISA) (100)</td>
<td>0.25-4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Staphylococcus epidermidis (MS) (15)</td>
<td>0.06-0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>S. epidermidis (MR) (26)</td>
<td>0.25-1</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Enterococcus faecalis (613)</td>
<td>0.12 to >16</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Enterococcus faecium (VAN-R) (26)</td>
<td>4-16</td>
<td>>16</td>
<td>>16</td>
</tr>
<tr>
<td>Streptococcus pneumoniae (PS) (202)</td>
<td>≤0.008-0.12</td>
<td>≤0.008</td>
<td>0.015</td>
</tr>
<tr>
<td>S. pneumoniae (PI) (103)</td>
<td>≤0.008-0.5</td>
<td>0.015</td>
<td>0.06</td>
</tr>
<tr>
<td>S. pneumoniae (PR) (296)</td>
<td>≤0.008-0.5</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Viridans group streptococci (PS) (190)</td>
<td>≤0.008-1</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>Viridans group streptococci (PR) (42)</td>
<td>≤0.008-1</td>
<td>0.03</td>
<td>0.5</td>
</tr>
<tr>
<td>Streptococcus pyogenes (ERY-S) (91)</td>
<td>≤0.008-0.03</td>
<td>≤0.008</td>
<td>≤0.008</td>
</tr>
<tr>
<td>Streptococcus agalactiae (ERY-S) (59)</td>
<td>≤0.008-0.06</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>S. agalactiae (ERY-NS) (42)</td>
<td>≤0.008-0.12</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>Haemophilus influenzae (BL-) (305)</td>
<td>≤0.008-0.25</td>
<td>≤0.008</td>
<td>0.015</td>
</tr>
<tr>
<td>H. influenzae (BL+) (101)</td>
<td>≤0.008-0.2</td>
<td>0.015</td>
<td>0.03</td>
</tr>
<tr>
<td>Moraxella catarrhalis (BL+) (93)</td>
<td>≤0.008-0.5</td>
<td>0.06</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Active in vitro against common causative pathogens of CAP and cSSTI, including antibiotic-resistant *S. pneumoniae* and MRSA

NOTE: In vitro activity does not always correlate with clinical efficacy

In Vitro Activity (Cont.)

<table>
<thead>
<tr>
<th>Bacteria (No. of isolates)</th>
<th>MIC (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
</tr>
<tr>
<td>Neisseria gonorrhoeae (403)</td>
<td>0.002-1</td>
</tr>
<tr>
<td>Escherichia coli (CAZ-S) (345)</td>
<td>≤0.03 to >16</td>
</tr>
<tr>
<td>E. coli (CAZ-NS) (63)</td>
<td>2 to >16</td>
</tr>
<tr>
<td>E. coli (ESBL+) (15)</td>
<td>0.5 to >32</td>
</tr>
<tr>
<td>Klebsiella oxytoca (19)</td>
<td>0.03 to >128</td>
</tr>
<tr>
<td>Klebsiella pneumoniae (210)</td>
<td>≤0.03 to >16</td>
</tr>
<tr>
<td>K. pneumoniae (ESBL+) (15)</td>
<td>32 to >32</td>
</tr>
<tr>
<td>Proteus mirabilis (58)</td>
<td>≤0.03 to >16</td>
</tr>
<tr>
<td>Serratia marcescens (59)</td>
<td>0.12 to >16</td>
</tr>
<tr>
<td>Salmonella spp. (46)</td>
<td>0.13-2</td>
</tr>
<tr>
<td>Citrobacter freundii (CAZ-S) (50)</td>
<td>0.06-16</td>
</tr>
<tr>
<td>C. freundii (CAZ-NS) (33)</td>
<td>4 to >16</td>
</tr>
<tr>
<td>Enterobacter cloacae (CAZ-S) (50)</td>
<td>≤0.03 to >16</td>
</tr>
<tr>
<td>E. cloacaæ (CAZ-NS) (35)</td>
<td>0.12 to >16</td>
</tr>
<tr>
<td>Acinetobacter spp.(47)</td>
<td>≤0.03 to >16</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa (58)</td>
<td>1 to >128</td>
</tr>
</tbody>
</table>

Extended spectrum of activity against commonly encountered Gram-negative and Gram-positive pathogens in CAP and cSSTI

NOTE: In vitro activity does not always correlate with clinical efficacy
Ceftaroline Susceptible Pathogens

- In cSSTIs, Ceftaroline efficacy has been demonstrated in clinical studies against the following pathogens, which were also susceptible to Ceftaroline in vitro:
 - **Gram-positive**
 - *Staphylococcus aureus* (including MRSA)
 - *Streptococcus pyogenes*
 - *Streptococcus agalactiae*
 - *Streptococcus anginosus* group (includes *S. anginosus*, *S. intermedius*, and *S. constellatus*)
 - *Streptococcus dysgalactiae*
 - **Gram-negative**
 - *Escherichia coli*
 - *Klebsiella pneumoniae*
 - *Klebsiella oxytoca*
 - *Morganella morganii*

- In CAP, Ceftaroline efficacy has been demonstrated in clinical studies against the following pathogens, which were also susceptible to Ceftaroline in vitro:
 - **Gram-positive**
 - *Streptococcus pneumoniae*
 - *Staphylococcus aureus* (methicillin-susceptible strains only)
 - **Gram-negative**
 - *Escherichia coli*
 - *Haemophilus influenzae*
 - *Haemophilus parainfluenzae*
 - *Klebsiella pneumoniae*

NOTE: Ceftaroline is not active against strains of Enterobacteriaceae producing ESBLs or *P. aeruginosa*. In vitro data indicate that the following atypical species are not susceptible to Ceftaroline: *Chlamydia phila* spp., *Legionella* spp., and *Mycoplasma* spp.

CAP, community-acquired pneumonia; cSSTI, complicated skin and soft tissue infections; ESBL, extended-spectrum beta-lactamases; MRSA, methicillin-resistant *Staphylococcus aureus*
Ceftaroline Susceptibility

The European Committee on Antimicrobial Susceptibility Testing breakpoints for susceptibility

<table>
<thead>
<tr>
<th>Organism</th>
<th>MIC breakpoint (mg/mL)</th>
<th>Susceptible (≤S)</th>
<th>Resistant (R>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td></td>
<td>1<sup>a</sup></td>
<td>2<sup>b</sup></td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td></td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Streptococcus groups A, B, C, G</td>
<td></td>
<td>Note<sup>c</sup></td>
<td>Note<sup>c</sup></td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td></td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td></td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

^aRefers to dosing of adults or adolescents (from 12 years and 33kg) with ceftaroline fosamil every 12 hours using 1-hour infusions (see section 4.2). Note that: There are no clinical trial data regarding the use of ceftaroline fosamil to treat CAP due to *S. aureus* with ceftaroline fosamil MICs >1mg/L; ^bRefers to dosing of adults or adolescents (from 12 years and 33kg) with ceftaroline fosamil every 8 hours using 2-hour infusions to treat cSSTI (see section 4.2). *S. aureus* with ceftaroline fosamil MICs ≥4mg/L are rare. PK-PD analyses suggest that dosing of adults or adolescents (from 12 years and 33kg) with ceftaroline fosamil every 8 hours using 2-hour infusions may treat cSSTI due to *S. aureus*, for which the ceftaroline fosamil MIC is 4mg/L; ^cInfer susceptibility from susceptibility to benzylpenicillin.

CAP, community-acquired pneumonia; cSSTI, complicated skin and soft tissue infection; MIC, minimum inhibitory concentration; PD, pharmacodynamic; PK, pharmacokinetics

ZINFORO® SmPC, 2017
Potential for induction of resistance

Ceftaroline
Potential for induction of resistance

- **Multistep studies** (multi-passage resistance selection for ceftaroline).

- Daily passages of *Staphylococcus aureus* were performed until a significant increase in MIC (>4-fold or MICs ≥ 32 μg/ml) was obtained or until 50 consecutive passages were completed. The minimum number of passages was 20 passages.

- No mutations associated with resistance have been detected

- *No in vitro automatic selection of mutations have been reported* (strains with MICs ≥ 4X in vitro, typical frequencies <10^{-10})

 - *No strains with MICs ≥ 4X, even after 50 passages to ceftaroline concentrations lower than MIC*

Pharmakokinetics

Ceftaroline
Tissue Penetration of Ceftaroline—CAP

Epithelial lining fluid\(^1\)

- Two dosages of **Ceftaroline** were compared in healthy adult subjects (IV 600mg q12h versus q8h)
- Plasma and ELF **Ceftaroline** concentration profiles were similar for both dosages, with the q8h regimen showing ~10-20% higher concentrations
- The ratio of the **Ceftaroline** area under the time-concentration curve in bronchial ELF to AUC in plasma was ~23%

Ceftaroline has been found to have rapid and deep tissue penetration in lung tissue\(^2\)

AUC, area under the curve; CAP, community-acquired pneumonia; ELF, epithelial lining fluid; IV, intravenous; q8h, every 8 hours; q12h, every 12 hours
Tissue Penetration of Ceftaroline—cSSTI

Antibiotics for MRSA infections have different pharmacokinetic profiles and tissue penetration.

<table>
<thead>
<tr>
<th></th>
<th>Ratio of SSTI: Plasma penetration (%)</th>
<th>Volume of distribution</th>
<th>Protein binding (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linezolid</td>
<td>104</td>
<td>40-50L</td>
<td>31</td>
</tr>
<tr>
<td>Tigecycline</td>
<td>74</td>
<td>7-9 L/kg</td>
<td>71-89</td>
</tr>
<tr>
<td>Teicoplanin</td>
<td>24-77</td>
<td>0.7-1.4 L/kg after 3-6mg/kg</td>
<td>88-91 (with weak affinity)</td>
</tr>
<tr>
<td>Daptomycin</td>
<td>68</td>
<td>0.1 L/kg</td>
<td>90-93</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>10-30</td>
<td>0.43-0.9 L/kg</td>
<td>30-55</td>
</tr>
<tr>
<td>Ceftaroline fosamil</td>
<td>Not available</td>
<td>20 L</td>
<td>20</td>
</tr>
</tbody>
</table>

Subcutaneous tissue penetration

- Ceftaroline fosamil subcutaneous tissue concentrations **in patients with diabetic foot infection** assessed by insertion of microdialysis probe near wound (IV ceftaroline fosamil 600mg q12h + avibactam 600mg q8h x 3 days)
- The \(C_{\text{max}} \) of ceftaroline fosamil in the infected tissue was 69% of the \(C_{\text{max}} \) in plasma within 2 hours of a steady-state dose

Ceftaroline has good tissue penetration in SSTI compared with other therapies

In healthy volunteers or patients

NOTE: There is limited experience with ceftaroline fosamil in treating patients with diabetic foot infections. Caution is advised when treating such patients.

\(C_{\text{max}} \), maximum serum concentration; cSSTI, complicated skin and soft tissue infection; IV, intravenous; MRSA, methicillin-resistant *Staphylococcus aureus*; q8h, every 8 hours; q12h, every 12 hours; SSTI, skin and soft tissue infection

Dosage in Adults and Renal Impairment

Ceftaroline dosage in adults and adolescents (aged from 12 to <18 years with bodyweight ≥33kg) with CrCL >50mL/min

<table>
<thead>
<tr>
<th>Infection</th>
<th>Dosage regimen</th>
<th>Frequency</th>
<th>Duration of treatment (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cSSTI⁹</td>
<td>600mg intravenously (over 60 minutes)</td>
<td>Every 12 hours</td>
<td>5-14</td>
</tr>
<tr>
<td>CAP</td>
<td>600mg intravenously (over 60 minutes)</td>
<td>Every 12 hours</td>
<td>5-7</td>
</tr>
</tbody>
</table>

⁹Based on pharmacokinetic and pharmacodynamic analyses, the recommended dosage for the treatment of cSSTI due to S. aureus for which the ceftaroline fosamil MIC is 2 or 4mg/L is 600mg every 8 hours using 2-hour infusions

Ceftaroline dosage in renal impairment in adults and adolescents (12 to <18 years of age with bodyweight ≥33kg) with a CrCL ≤50mL/min

<table>
<thead>
<tr>
<th>CrCL (mL/min)</th>
<th>Dosage regimen</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30 to ≤50</td>
<td>400mg intravenously (over 60 minutes)</td>
<td>Every 12 hours</td>
</tr>
<tr>
<td>≥15 to ≤30</td>
<td>300mg intravenously (over 60 minutes)</td>
<td>Every 12 hours</td>
</tr>
<tr>
<td>ESRD, including hemodialysis</td>
<td>200mg intravenously (over 60 minutes)</td>
<td>Every 12 hours</td>
</tr>
</tbody>
</table>

Ceftaroline is hemodialyzable; thus, Ceftaroline should be administered after hemodialysis on hemodialysis days

Simple dosing with no routine monitoring, low risk of drug–drug interaction, no dose adjustment based on bodyweight

NOTE: There are limited clinical data on the use of ZINFORO® to treat cSSTI caused by S. aureus with a MIC of >1mg/L. Ceftaroline should not be used to treat cSSTI due to S. aureus for which ceftaroline fosamil MIC is >4mg/L

cSSTI, complicated skin and soft tissue infection; CrCL, creatinine clearance; ESRD, end-stage renal disease
ZINFORO® SmPC, 2017
Safety/Tolerability

Ceftaroline
Tolerability Profile and TEAEs

- In Phase III trials in cSSTI and CAP, 1,305 patients received **Ceftaroline**, 600 mg BID IV (879 for 5–7d, 236 for 8–10d)
- Most patients (~75%) had either no TEAEs or mild TEAEs\(^1,2\)
- The proportion of patients experiencing mild, moderate, or severe TEAEs was similar between **Ceftaroline** and comparator antibiotics\(^1,2\)
 - These TEAEs were generally mild or moderate in severity\(^3\)
- Overall, the safety profile of **Ceftaroline** in pediatric patients aged from 2 months to 17 years with cSSTI or CAP (227 patients in two trials) was similar to that observed in the adult population

\(^4\)Two patients in the ZINFORO\(^\circledR\) arm had *Clostridium difficile* reported in the CANVAS trials; no patient had *C. difficile* reported in either treatment group during the FOCUS trials, although *C. difficile* testing was not required as part of the study procedures\(^4,5,6\)

\(^5\)Pruritis occurred in 1.9% of patients receiving ZINFORO\(^\circledR\) and 4.5% of patients receiving comparators (pooled analysis)

Ceftaroline has a similar tolerability profile to other cephalosporins and a low incidence of discontinuation due to AEs\(^4-7\)
<table>
<thead>
<tr>
<th></th>
<th>Cumulative data (CANVAS 1&2, FOCUS 1&2), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ceftaroline (N=1,305)</td>
</tr>
<tr>
<td>Patients ≥1 TAE</td>
<td>597 (45.7)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>60 (4.6)</td>
</tr>
<tr>
<td>Nausea</td>
<td>55 (4.2)</td>
</tr>
<tr>
<td>Headache</td>
<td>57 (4.4)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>25 (1.9)</td>
</tr>
<tr>
<td>Rash</td>
<td>1.8%</td>
</tr>
</tbody>
</table>

Ceftaroline (N=1,305) Comparators (N=1,301)

Patients ≥1 TAE 597 (45.7) 607 (46.7)

Diarrhea 60 (4.6) 42 (3.2)

Nausea 55 (4.2) 49 (3.8)

Headache 57 (4.4) 40 (3.1)

Pruritus 25 (1.9) 59 (4.5)

Rash 1.8% 1.5%

Zinforo SmPC, Jul 2017,
Corrado ML. J Antimicrob Chemother 2010;65(Suppl. 4):iv67–71
CAP, community-acquired pneumonia; cSSTI, complicated skin and soft tissue infection
Hypersensitivity reactions

❖ 3-5%

❖ Contraindications
 ❖ Hypersensitivity to the class of cephalosporins
 ❖ Direct and severe allergic reactions to any lactamic antibiotic
Direct antiglobulin test – DAGT Coombs

- The incidence of DAGT seroconversion in patients receiving Ceftaroline was
 - 11.2% patients receiving Ceftaroline q12 hr and
 - 32.3% in patients receiving Ceftaroline q8hr³

- No hemolysis in patients who developed DAGT during treatment with ceftaroline

- Hemolytic anemia should be considered in patients who develop anemia during treatment with ceftaroline
Drug–Drug Interactions

Ceftaroline
Drug–Drug Interactions and Compatibility with Other Antibiotics

Ceftaroline has low potential for drug–drug interactions involving:

1. Hepatic CYP P430 enzymes
2. Renal uptake transporters (OCT2, OAT1, OAT3)
 - Including drugs that are inhibitors (e.g., probenecid) or substrates of these transporters
3. Vasodilator or vasoconstrictor drugs that may alter renal blood flow

Compatibility with other antibiotics (checkerboard analysis):

- Amikacin
- Azithromycin
- Aztreonam
- Daptomycin
- Levofloxacin
- Linezolid
- Meropenem
- Tigecycline
- Vancomycin

In vitro studies have not demonstrated any antagonism between **Ceftaroline** in combination with other commonly used antibacterial agents (shown above)

NOTE: No clinical drug–drug interaction studies have been conducted with **Ceftaroline**

OAT, organic anion transporter; OCT, organic cation transporter
1. Frampton JE. Drugs 2013;73:1067-94; 2. ZINFORO® SmPC, 2017
Summary

• Bactericidal antibiotic
• Broad range: Gram pos + Gram neg
• MRSA activity
• No induction of resistance
• Excellent tissue penetration in both soft tissues and lungs
• Favorable safety profile
• No significant drug-drug interactions
• Synergy with a wide range of antibiotics