Takotsubo syndrome

Ευτυχία Σμπαρούνη,
FACC, FESC
Definition

• Takotsubo
• Apical ballooning
• Broken heart syndrome
• Stress cardiomyopathy
• Cathecholaminergic cardiomyopathy
Epidemiology

- 1990 first report by Japanese
- Unknown prevalence
- Increase in reported incidence
- 90% postmenopausal women- 10% men and younger women
- Primary
- Secondary –undelying medical conditions activating sympathetic NS
- 1-2% of ACS
Endocrine
- Phaeochromocytoma, thyrotoxicosis (endogenous and iatrogenic), SIADH, Addisonian crisis, multiple endocrine neoplasia 2A syndrome, hyperglycaemic hyperosmolar state, hyponatraemia, severe hypothyroidism, Addison’s disease, adrenocorticotropin hormone deficiency, autoimmune polyendocrine syndrome II

Neurological and neurosurgical
- Acute neurosurgical emergencies (e.g. subarachnoid haemorrhage, acute head injury, acute spinal injury)
- Acute neuromuscular crises, especially if involving acute ventilatory failure (e.g. acute myasthenia gravis, acute Guillain–Barré syndrome)
- Epileptic seizures, limbic encephalitis, ischaemic stroke, posterior reversible encephalopathy syndrome

Respiratory
- Acute exacerbation of asthma or COPD (especially with excessive use of inhaled beta2-agonists)
- Acute pulmonary embolism
- Acute pneumothorax
- Obstetric, e.g. miscarriage, labour, emergency Caesarean section

Psychiatric
- Acute anxiety attack/panic disorder
- Attempted suicide
- Drug-withdrawal syndromes
- Electroconvulsive therapy
- Gastrointestinal, e.g. acute cholecystitis, biliary colic, acute pancreatitis, severe vomiting, severe diarrhoea, pseudomembranous colitis
- Peritonitis

Infection
- Severe sepsis
- Babesiosis

Cardiological
- Dobutamine stress echocardiography
- Radiofrequency arrhythmia ablation
- Pacemaker implantation
- Electrical DC cardioversion for atrial fibrillation
- Post-cardiac arrest including ventricular fibrillation

Haematological
- Blood transfusions
- Thrombotic thrombocytopenic purpura

Surgical
- Many cases have been reported during induction of general anaesthesia or during non-cardiac surgery or interventional procedures under local or general anaesthesia (e.g. cholecystectomy, hysterectomy, rhinoplasty, Caesarean section, radiofrequency liver ablation, radiotherapy, colonoscopy, difficult urinary catheterization, carotid endarterectomy)

Medication and illicit drugs
- Epinephrine injection
- Nortriptryline overdose, venlafaxine overdose, albuterol, flecainide, metoprolol withdrawal, 5-fluorouracil, duloxetine
- Cocaine abuse
Acute Heart Failure Association diagnostic criteria

• Transient RWMA often but not always precipitated by an emotional (women) or physical (men) trigger.
• RWMA usually extend beyond a single coronary artery distribution
• Absence of culprit coronary lesion-ruptured plaque, thrombi, dissection-
• New and reversible ECG changes-ST elevation, ST depression, T wave inversion, QT prolongation, LBBB-. ECG abn may persist for 6-12 months.
• Significantly elevated BNP or NT- proBNP. May persist for 6-12 months.
• Mild elevation of cardiac troponins-disparity with the degree of LV dysfunction.
• Recovery of LV function in 3-6 months.
Mayo clinic diagnostic criteria

- Transient RWMA > single coronary; rarely focal, diffuse
- No CAD; if present not correlating with RWMA
- ECG changes or Tn elevation
- No myocarditis or pheochrocytoma
Of the 1750 patients studied, 179 patients were male (10.2%, dark blue), while 1571 were female (89.8%, light blue). Male patients were younger than females (62.9±13.1 vs. 66.8±13.0 years, P<0.001). 1384 patients were women older than 50 years (79.1%).
Triggering factors (N=1750)

- 36.0% Physical triggers
- 27.7% Emotional triggers
- 7.8% Both physical and emotional triggers
- 28.5% No evident trigger
Physical triggers (N=630, 36.0%)

- 20.2% Acute respiratory failure
- 18.4% Post-surgical/fracture
- 15.5% Central nervous system conditions
- 8.1% Infection
- 1.3% Malignancy
- 36.5% Others
Emotional triggers (N=485, 27.7%)

- 22.1% Grief/loss
- 22.1% Panic/fear/anxiety
- 16.1% Interpersonal conflict
- 15.8% Anger/frustration
- 7.6% Financial or employment problems
- 16.3% Others
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Takotsubo Cardiomyopathy</th>
<th>Acute Coronary Syndrome</th>
<th>P Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Cohort (N=1750)</td>
<td>Matched Cohort (N=455)</td>
<td></td>
</tr>
<tr>
<td>Female sex — no. (%)</td>
<td>1571 (89.8)</td>
<td>411 (90.3)</td>
<td>1.00</td>
</tr>
<tr>
<td>Age — yr</td>
<td>66.4±13.1</td>
<td>67.7±12.5</td>
<td>0.19</td>
</tr>
<tr>
<td>Chest pain — no./total no. (%)</td>
<td>1229/1619 (75.9)</td>
<td>322/438 (73.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Dyspnea — no./total no. (%)</td>
<td>760/1620 (46.9)</td>
<td>208/439 (47.4)</td>
<td>0.001</td>
</tr>
<tr>
<td>Median troponin (IQR) — factor × ULN‡</td>
<td>7.70 (2.22–24.00)</td>
<td>7.68 (2.38–24.21)</td>
<td>0.62</td>
</tr>
<tr>
<td>Median creatine kinase (IQR) — factor × ULN</td>
<td>0.85 (0.52–1.48)</td>
<td>0.87 (0.55–1.42)</td>
<td><0.001</td>
</tr>
<tr>
<td>Median brain natriuretic peptide (IQR) — factor × ULN</td>
<td>6.12 (2.12–15.70)</td>
<td>5.89 (1.68–13.92)</td>
<td><0.001</td>
</tr>
<tr>
<td>ST-segment change — no./total no. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation</td>
<td>690/1578 (43.7)</td>
<td>185/420 (44.0)</td>
<td>0.03</td>
</tr>
<tr>
<td>Depression</td>
<td>121/1578 (7.7)</td>
<td>35/420 (8.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Heart rate — beats/min</td>
<td>87.5±21.8</td>
<td>87.3±21.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Systolic blood pressure — mm Hg</td>
<td>130.6±28.8</td>
<td>131.8±31.4</td>
<td>0.96</td>
</tr>
<tr>
<td>Left ventricular ejection fraction — %¶</td>
<td>41.1±11.8</td>
<td>40.7±11.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Left ventricular end diastolic pressure — mm Hg</td>
<td>21.3±8.0</td>
<td>22.1±7.7</td>
<td>0.001</td>
</tr>
<tr>
<td>Coexisting medical condition — no./total no. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>245/1597 (15.3)</td>
<td>96/455 (21.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Neurologic or psychiatric disorder</td>
<td>714/1525 (46.8)</td>
<td>252/452 (55.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Acute neurologic disorder</td>
<td>143/1528 (9.4)</td>
<td>41/452 (9.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Past or chronic neurologic disorder</td>
<td>293/1512 (19.4)</td>
<td>98/452 (21.7)</td>
<td>0.002</td>
</tr>
<tr>
<td>Acute psychiatric disorder</td>
<td>149/1525 (9.8)</td>
<td>57/452 (1.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Past or chronic psychiatric disorder</td>
<td>444/1512 (29.4)</td>
<td>165/451 (36.6)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
A

P<0.001

Patients (%)

0-29% 30-44% 45-54% ≥55%

LVEF on admission (%)

Takotsubo cardiomyopathy (N=443)
Acute coronary syndrome (N=295)

B

LVEDP (mmHg)

LVEF (%)
C

LVEF (%)

P<0.001

Admission In-hospital recovery 60-day follow-up
(N=1179) (N=671) (N=290)
Figure 3. Kaplan–Meier Estimates of 10-Year Outcome Events.

Shown are the proportions of patients with any major adverse cardiac and cerebrovascular event (MACCE), which was a composite of death from any cause, recurrence of takotsubo cardiomyopathy, stroke or transient ischemic attack (TIA), or myocardial infarction (MI).
pathophysiology

• Vascular
 • Spasm
 • Aborted MI with recanalization
 • Abrupt increase in afterload

• Myocardial
 • Acute LVOT obstruction
 • Catecholamine-induced myocardial stunning
Anatomic variations

• Apical -hypokinesis +basal hypercontractility (75-80%)
• Mid left ventricular –hypokinesis+basal and apical hypercontractility (10-15%)
• Inverted or basal –hyponikesis+apical hypercontractility (5%)
• Rare forms
 • Biventricular apical dysfunction (more severe form)
 • Isolated RV involvement
symptoms

• Chest pain
• Sob
• Syncope (VT, LVOT obstruction)
• Palpitations
• Shock
diagnosis

• ECG abnormal >95%
 • ST elevation/depression, Q, LBBB <12h
 • QT prol/ T inversion 24-48 h

• Urgent coronary angiography-ventriculography (bystander CAD 10%)

• Biomarkers (troponin, BNP)

• Echo (MR, LVOTO, RV involvement, thrombus)

• CMR (edema +, LGE -, dd myocarditis)

• MIBG (reduced in affected area, nl perfusion, dd AMI)
<table>
<thead>
<tr>
<th></th>
<th>Takotsubo syndrome</th>
<th>Myocardial infarction</th>
<th>Myocarditis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site of wall motion abnormality</td>
<td>Concentric mid- and apical LV wall</td>
<td>Follows expected epicardial coronary artery distribution</td>
<td>Usually global unless regional edema/LGE is severe</td>
</tr>
<tr>
<td>Myocardial edema</td>
<td>Typically transmural in a concentric mid and apical LV wall distribution</td>
<td>Subendocardial or transmural at sites of wall motion abnormalities</td>
<td>Subepicardial, mid-myocardial or transmural</td>
</tr>
<tr>
<td>Left ventricular impairment</td>
<td>Yes: typically impaired ejection fraction with elevated indexed end systolic volume > 33% of patients</td>
<td>Yes: typically impaired ejection fraction with elevated indexed end systolic volume May be seen, particularly if right coronary artery territory involved</td>
<td>Yes, but may show only mild/borderline low normal ejection fraction Rarely impacts on right ventricular function</td>
</tr>
<tr>
<td>Right ventricular impairment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGE</td>
<td>Maybe (10%-40%)</td>
<td>Yes</td>
<td>Often</td>
</tr>
<tr>
<td>Site of LGE</td>
<td>Concentric transmural mid and apical LV wall</td>
<td>Typically subendocardial or transmural in recognized epicardial coronary artery distribution</td>
<td>Mid-myocardial or subepicardial in a focal non-coronary artery distribution</td>
</tr>
<tr>
<td>Type of LGE</td>
<td>Low-intensity LGE</td>
<td>Bright LGE</td>
<td>Low-intensity or Bright LGE</td>
</tr>
<tr>
<td>Microvascular obstruction</td>
<td>No</td>
<td>Maybe</td>
<td>No</td>
</tr>
<tr>
<td>Resolution at 3 months</td>
<td>Yes</td>
<td>No</td>
<td>Potentially but may show residual myocardial fibrosis and impairment</td>
</tr>
</tbody>
</table>

Int Heart J 2018; 59: 250-255)
Gender and age	90% female. Majority >50 years and post-menopausal.	No sex prevalence. More frequent in the young.
Preceding events	Stressor trigger identifiable in ~70% of cases.	Symptoms and signs of infection often present (fever, chills, headache, muscle aches, general malaise, cough, nausea, vomiting, diarrhoea).
Cardiac symptoms	Chest pain, dyspnoea, palpitations.	Chest pain, dyspnoea, peripheral oedema, fatigue, and palpitations.
Clinical signs	Pericardial rub rare.	Pericardial rub may be present.
ECG at admission	ST changes such as ST-segment elevation or non-ST-segment elevation. Deep T wave inversion, QT prolongation. Rarely normal.	ST-segment elevation or depression, negative T-wave, bundle branch block, atrioventricular block, low voltage, and/or ventricular arrhythmias. Normal in several cases.
Cardiac enzymes	Low/moderate troponin rise. Discrepancy between the large amount of dysfunctional myocardium and peak troponin level.	Frequently significant troponin rise, proportional to the hypokinetic area. Normal in several cases.
Other biomarkers	C-reactive protein (CRP) mildly elevated unless infective trigger. BNP moderately or significantly elevated.	Erythrocyte sedimentation rate and CRP elevated. BNP basically elevated. Acute viral serology may be detected.
Echocardiography	Apical ballooning, anatomical variants, 'circumferential pattern', left ventricular outflow tract obstruction (LVOTO), right ventricular (RV) involvement, transient mitral regurgitation.	Localized or diffuse wall motion abnormalities of LV and/or RV dilatation, increased wall thickness, pericardial effusion.
Cardiac magnetic resonance imaging	High T2 signal intensity (oedema), late gadolinium enhancement (LGE) usually absent acutely. If present acutely patchy LGE which usually resolves at follow-up. Absence of typical infarct LGE pattern.	High T2 signal intensity (oedema), LGE with non-ischaemic distribution (often epicardial). Absence of typical infarct LGE pattern.
Histological findings	Contraction band necrosis.	Infiltration of many inflammatory cells. Interstitial oedema.
Viral genome, separation of virus, or identification of virus by antibody titre	Rare and usually absent where measured.	Often positive.
Prognosis	50% of cases have acute complications, 4–5% mortality.	Variable but majority full recovery. Highest mortality with fulminant myocarditis.
Therapy	Supportive.	Supportive. Immunosuppression in severe cases if giant cell myocarditis suspected.
Complications-1

• Acute
 • AHF 12-45%
 • RVF 18-34%
 • LVOT obstruction 10-25%
 • MR 14-25%
 • Shock 6-20%

• Arrhythmias
 • AF 5-15%
 • VT 4-9%
 • Bradycardia 2-5%

• Thrombus 2-8%
• Tamponade <1%
• Ventricular wall rupture <1%
Complications-2

- In-hospital mortality: 1-4.5%
- Recurrence: 5-22% (3 months-10yrs)
- 5-year mortality: 3-17%
AHF

• Predictors
 • Age
 • EF at presentation
 • Admission and peak troponin
 • Physical trigger

• Supportive therapy
 • Inotropes
 • Ventilation
 • IABP
LVOTO

- 20-140mmHg gradient
 - Significant > 25mm
 - High risk > 40mm
- Apical stunning + basal hypercontraction
- MR, shock
- Inotropes, nitrates worse
- B-blockers better, a-1 agonist (phenylephrine) better
- levosimendan?
MR

• SAM/LVOT obstruction
• Apical tethering sublvular apparatus
• More often AHF or shock
Chronic phase
shock

- LVOTO
- MR
- RV failure
arrhythmias

- AHF
- QT
- Rarely remote (LVEF recovery)
thrombus

• Embolism
• Usually 2-5 days symptom onset
• May occur 14 days symptom onset
• Anticoagulation for 3 months
• Usually resolves in 2 weeks
RV (1/3)

- Age
- EF
- AHF
- Pleural effusion
- Longer stay
- Prognosis
Wall rupture

• 2-8 days symptom onset
• LVOTO
• Persistent ST elevation
Risk stratification (1 major or 2 minor)

• High risk-major factors
 • Age>75
 • SBP<110 mmHG
 • Pulm edema
 • VT, VF, syncope
 • LVEF<35%
 • LVOTO>40mmHg
 • MR
 • Apical thrombus
 • VSD or free wall rupture

• High risk-minor factors
 • Age: 70-75
 • Physical trigger
 • ECG: QT>500ms, Q, pers ST elevation
 • LVEF:35-45%
 • BNP>600 pg/ml, NT-proBNP>2000pg/ml
 • Bystander CAD (10-15%)
 • RV involvement
Treatment

- B-blockers (EF<45%)
- ACE-inhibitors (EF<45%)
- Anticoagulants (thrombus, AF)
- Secondary treat underlying condition
GENERAL

• Usually transient and benign
• If shock look for LVOT obstruction
• thrombus→anticoagulation (3 months)
• ↓↓ EF anticoagulation
• LV usually recovers within 1-4 weeks
• In hospital mortality 4%
• 2% /year recurrence rate (? prevention)
Non-invasive cardiac imaging evaluation of patients with chronic systolic heart failure: a report from the European Association of Cardiovascular Imaging (EACVI)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Echo</th>
<th>CMR</th>
<th>SPECT</th>
<th>PET</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocarditis</td>
<td>+</td>
<td></td>
<td>+++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarcoidosis</td>
<td>+</td>
<td>+++</td>
<td></td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>Hypertrophic CMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCM</td>
<td>++++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amyloidosis</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilated CMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocarditis</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eosinophilic syndromes</td>
<td>+</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron: haemochromatosis</td>
<td>+</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron: thalassemia</td>
<td>+</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restrictive CMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pericarditis</td>
<td>++</td>
<td>++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amyloidosis</td>
<td>++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endomyocardial fibrosis</td>
<td>+</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anderson-Fabry</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undiagnosed CMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Takotsubo</td>
<td>++</td>
<td>++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARVC</td>
<td>++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

European Heart Journal (2014) 35, 3417–3425
Unclassified CMs

<table>
<thead>
<tr>
<th>Familial</th>
<th></th>
<th>Non-familial</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td></td>
<td>Tako Tsubo</td>
<td></td>
</tr>
<tr>
<td>Left ventricular non-compaction</td>
<td></td>
<td>cardiomyopathy</td>
<td></td>
</tr>
<tr>
<td>Barth syndrome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamin A/C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZASP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-dystrobrevin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>