Ο ρόλος των κλασικών και νεότερων ηχωκαρδιογραφικών τεχνικών

How and when new echo techniques help in cardio-oncology patients?

Teresa López Fernández
Madrid, Spain
New echo techniques in cardio-oncology

1. What are we missing with current strategies?
2. What’s new in echo?
3. Tips and tricks for daily practice
Cardiovascular complications in cancer

Role of echo in cardio-oncology

<table>
<thead>
<tr>
<th>Baseline evaluation</th>
<th>During treatment</th>
<th>End-treatment LT survivors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk stratification</td>
<td>Early detection of injury</td>
<td>Prediction of recovery</td>
</tr>
</tbody>
</table>

Role of echo in cardio-oncology

2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines

EurHJ- Cardiovasc Imaging (2017) 0, 1–14

EACVI appropriateness criteria for the use of transthoracic echocardiography in adults: a report of literature and current practice review

EurHJ- Cardiovasc Imaging (2017) 0, 1–14
No standardized monitoring protocols

<table>
<thead>
<tr>
<th>Cancer Therapeutics</th>
<th>Stage A</th>
<th>Stage B</th>
<th>Stage C</th>
<th>Stage D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthracyclines</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HER-2 Therapy</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>VEGF Inhibitors</td>
<td>✓*</td>
<td>✓*</td>
<td>✓</td>
<td>0</td>
</tr>
<tr>
<td>Proteasome Inhibitors</td>
<td>0</td>
<td>0</td>
<td>✓</td>
<td>0</td>
</tr>
<tr>
<td>Immune Checkpoint Inhibitors</td>
<td>0</td>
<td>0</td>
<td>✓</td>
<td>0</td>
</tr>
</tbody>
</table>

Kenigsberg B et al. JACC Heart Fail. 2018 Feb;6(2):87-95.

How and when new echo techniques help in cardio-oncology patients?

tlfernandez8@gmail.com
CTRCD definitions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Definition</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓EF >0.10</td>
<td>From baseline to <0.50</td>
<td>ESC 2016</td>
</tr>
<tr>
<td>↓EF >0.10</td>
<td>From baseline to <0.53</td>
<td>ASE-EACVI 2014</td>
</tr>
</tbody>
</table>

2D-LVEF needs help!
(variability 8-11%)
What’s new in echo?

We need more reproducible and sensitive parameters
We need precise LVEF measurements

3DE variability (5.8%) vs 2DE (9.8%)

3D Dynamic Automatic Quantification

Analysis time (<30 sec); Feasibility >90%; Reproducibility

Multi-beat analysis (5 beats)
3DEF Automated Quantification

Reproducibility

Manual 3DE vs Automatic 3DE

cMRI vs Automatic 3DE

We need more sensitive parameters

Early HF treatment (EF-based)

We need more sensitive parameters

Eur J Heart Failure 2017; 19: 307–313
2D Speckle tracking: GLS quantification

1. Feasibility >90%
2. Reproducibility: GLS >2DEF (inter-obs variability <4%)
3. Differences between vendors lower than 2D-EF variability
4. No universal normal values: relative changes during F/U

Tips and tricks for daily practice
Local clinical protocols adapted to local resources
Assessment of baseline risk of CV complications

- No CVRF/CVD
 - 1st onco event
- No CVRF/CVD
 - Previous cancer
- CVRF +/- CVD
 - 1st onco event
- CVRF +/- CVD
 - Previous cancer

- Age
- Genetics
- Comorb.
- Treatment
- Prognosis
Assessment of baseline risk of CV complications

Echo: >65yo; >2CVFR; previous CVD/cancer; abnormal ECG/biomarkers
Assessment of baseline risk of CV complications

No CVRF/CVD 1st onco event <65yo

Baseline echo & abnormal findings

Routine echo rarely identified significant cardiac damage to change treatment decisions

Cancer 2012;118:1919-24

EuroEcho 2015
Assessment of baseline risk of CV complications

EF risk stratification

- LLN 55%
- Reference ≥ 65%
- LVEF 55-64% HR 4.0
- LVEF 50-54% HR 12.6

How and when new echo techniques help in cardio-oncology patients?

J Clin Oncol 2012; 30:3792-3799
Assessment of baseline risk of CV complications

GLS risk stratification

- EF 50-55%
- Smoking
- HTN
- DM
- CAD

GLS ≥-17.5 %

\[\uparrow \times 6 \text{ RR} \]
Death/ HF

Early identification of injury during therapy

1. Accurate adjudication of SE
2. Best method for EF: 3DEF
3. Identify potential sources of error related with load conditions

- Optimize CVRF and CVDs
- Follow-up
 - Sign and symptoms
 - Biomarkers (early LVD)
 - ECG
 - Echo: CTRCD Diagnosis
 Identify early LVD
- Reduce Rx interruptions

Early identification of injury during therapy

No CVRF/CVD
1st onco event <65yo

TnI evaluation at each cycle

TnI POS
Cardiology consultation

TnI NEG
ECHO 6 months after completion of therapy

Early identification of injury during therapy

↓GLS+/−↑troponins predicts LVD with a high NPV

<table>
<thead>
<tr>
<th>GLS of 11%</th>
<th>n</th>
<th>Sn</th>
<th>Sp</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>93</td>
<td>65%</td>
<td>94%</td>
<td>91%</td>
</tr>
</tbody>
</table>

J Am Soc Echocardiogr 2013;26:493-8

<table>
<thead>
<tr>
<th>GLS >15.9% or cTnT >0.004ng/ml</th>
<th>n</th>
<th>Sn</th>
<th>Sp</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75</td>
<td>93%</td>
<td>66%</td>
<td>98%</td>
</tr>
</tbody>
</table>

Eur J Heart Failure 2014; 16: 300–308

<table>
<thead>
<tr>
<th>GLS >10% or ▲hs-TNI</th>
<th>n</th>
<th>Sn</th>
<th>Sp</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>43</td>
<td>65%</td>
<td>97%</td>
<td>97%</td>
</tr>
</tbody>
</table>

Am J Cardiol 2011, 107(9): 1375-80

Prediction of LVD recovery

<table>
<thead>
<tr>
<th>Echo Parameter</th>
<th>Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ventricular structure</td>
<td></td>
</tr>
<tr>
<td>LV end-diastolic volume, ml</td>
<td>117 (104, 132)</td>
</tr>
<tr>
<td>LV end-systolic volume, ml</td>
<td>67 (58, 80)</td>
</tr>
<tr>
<td>LV mass, g</td>
<td>(114, 164)</td>
</tr>
<tr>
<td>Relative wall thickness</td>
<td>(0.31, 0.39)</td>
</tr>
<tr>
<td>Left ventricular diastolic function</td>
<td></td>
</tr>
<tr>
<td>E/e</td>
<td>7.6 (6.1, 6.6)</td>
</tr>
<tr>
<td>Ees, mmHg/mil</td>
<td>1.98 (1.61, 2.39)</td>
</tr>
<tr>
<td>Left ventricular contractility</td>
<td></td>
</tr>
<tr>
<td>Longitudinal strain, %</td>
<td>-12.8 (-15.2, -10.6)</td>
</tr>
<tr>
<td>Circumferential strain, %</td>
<td>-21.2 (-25.4, -17.9)</td>
</tr>
<tr>
<td>Radial strain, %</td>
<td>44.5 (32.2, 52.3)</td>
</tr>
<tr>
<td>Ventricular-arterial coupling</td>
<td></td>
</tr>
<tr>
<td>Ea, mmHg/ml</td>
<td>2.35 (2.02, 2.82)</td>
</tr>
<tr>
<td>Meridional ESS, 10^3 dynes/cm^2</td>
<td>99.5 (85.0, 116.9)</td>
</tr>
<tr>
<td>Circumferential ESS, 10^3 dynes/cm^2</td>
<td>150 (136, 166)</td>
</tr>
<tr>
<td>Ea/Ees_{33}</td>
<td>1.31 (1.09, 1.47)</td>
</tr>
</tbody>
</table>

CONCLUSIONS: Doxorubicin and trastuzumab resulted in modest, persistent declines in LVEF at 3 years. Changes in volumes, strain, and ventricular-arterial coupling were consistently associated with concurrent and subsequent LVEF declines and recovery across therapies.

Cardio-protection treatment guidance

Drop of 10 points to LVEF <53%

Relative drop of GLS as compared to baseline

< 8%

No evidence of subclinical LV dysfunction

> 15%

Subclinical LV dysfunction

↑cTroponins

Yes

CTRCD

Consult cardiologist
Repeat TTE in 2-3 weeks

HF Treatment

Do not modify anticancer therapy

Stage B HF

Consider early cardio-protective intervention

Cardio-protection treatment guidance

SUCCOUR Trial

International multicenter prospective randomized trial
N=320 (88% BC) F/U 3y

Inclusion criteria
Cardiotoxic chemo + ≥1 HF-risk factor

HF-risk factors
34% Hypertension
10% DM

Baseline
3DEF 61±4%
GLS 20.3±2.5%

How and when new echo techniques help in cardio-oncology patients?

J Am Coll Cardiol Img 2018;11:1098–105
Early identification of CV injury during therapy

Not only HF!!

Vascular toxicities, valvular HD, pericardium, RT…

High clinical suspicion & CVRF control

How and when new echo techniques help in cardio-oncology patients?
Take home messages: Cardiac imaging in CO

- Stratify CTox risk
- Optimize CV conditions
- Preventive strategies
- Early identification and treatment of CTox
- ↓ treatment interruptions
- ↓CV events
Take home messages: Cardiac imaging in CO

LVEF is the currently recommended method to guide therapy

3D echo is the method of choice for sequential calculation of LVEF

GLS is more sensitive than 2DEF for the detection of minor changes in LV function (Better intra and inter-observer variability than LVEF)
Take home messages: unresolved issues

CTox definitions: Risk prediction models & clinical strategies

<table>
<thead>
<tr>
<th>Type</th>
<th>Classification</th>
<th>Definition</th>
<th>Onco management</th>
<th>Cardio management</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Early biochemical</td>
<td>↑ Biomarkers (≥20% if baseline abnormal)</td>
<td>No change</td>
<td>Consider close monitoring or cardioprotective therapy</td>
</tr>
<tr>
<td>2</td>
<td>Early functional</td>
<td>↓ GLS +/- diastolic dysfunction</td>
<td>No change</td>
<td>Start cardioprotection</td>
</tr>
<tr>
<td>3</td>
<td>Early mixed</td>
<td>↑ Biomarkers + ↓GLS/DD</td>
<td>No change</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Symptomatic HFpEF</td>
<td>HFpEF</td>
<td>Review risk/benefit</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Asymptomatic LVD</td>
<td>New EF <50% or ↓ >10% to EF <55%</td>
<td>Review risk/benefit</td>
<td>HF treatment</td>
</tr>
<tr>
<td>6</td>
<td>Symptomatic LVD</td>
<td>New EF <50% or ↓ >10% to EF <55%</td>
<td>Interrupt and review risk/benefit</td>
<td></td>
</tr>
</tbody>
</table>

PareekN….Lyon AR. European Journal of Heart Failure (2018)
Ευχαριστώ