OCT-What we see, what we measure and where we need it?

Konstantina Bouki, MD, PhD, FESC
2nd Department of Cardiology
General Hospital of Nikea, Pireaus
Potential conflicts of interest

Speaker’s name: Konstantina Bouki

I do not have any potential conflict of interest
OCT (FD-OCT/OFDI)
Normal Artery Topography

Adventitia

catheter

Media

Intima

Wire Artifact

IEL

EEL
FIBROUS PLAQUE

TCFA
CALCIFIED PLAQUE

CALCIUM NODULE
THROMBUS

RED THROMBUS

WHITE THROMBUS

1 mm

05:14:35 0001
01/20/2009

www.hcs.gr

70 ΧΡΟΝΙΑ ΚΑΡΔΙΟΛΟΓΙΑΣ (ΕΚΕ)
70 YEARS OF CARDIOLOGY (HSC)
PΑΝΕΛΛΗΝΙΟ ΚΑΡΔΙΟΛΟΓΙΚΟ ΣΥΝΕΔΡΙΟ
PANHELLENIC CONGRESS OF CARDIOLOGY
Good stent apposition and expansion

Stent edge dissection

Severe malapposition + underexpansion

Intra-stent thrombus

STENT EVALUATION
STENT- VESSEL WALL INTERACTION

Complete endothelialization

Extensive evaginations

Neoatheromatosis-Thrombus
What do we measure with OCT?
What do we measure?
Discrepancy between frequency domain optical coherence tomography and intravascular ultrasound in human coronary arteries and in a phantom in vitro coronary model.

International Journal of Cardiology 221 (2016) 860–866
FD-OCT in the evaluation of the left main coronary artery stenosis. Correlation with FFR.
Bouki et al. Eur Heart J. 2018

Left Main MLA<5.3mm\(^2\) predicts FFR ≤0.80 with:
- sensitivity=85%
- specificity=93%
- accuracy=90%

ROC Curve

AUC=0.93, p<0.00
Cut off=5.3mm\(^2\)
What do we measure?

- Distal reference area: 11.83 mm²
- Minimal lumen area: 7.06 mm²
- Proximal reference area: 8.23 mm²

- Stent expansion: 70.3%
- Stent underexpansion
- Edge dissection
- Stent malapposition
- Tissue prolapse
Expert consensus document on OCT for guiding PCI. Eurointervention 2018

Plaque burden <50% at stent edge and no lipid pool

Dissection
(<60°, flap limited to intima, <2 mm length)

No extensive protrusion

Malapposition
(axial distance <0.4 mm and <1 mm length)

Lumen

Ref dist.

MSA

Ref prox.

MSA > 5.5 mm² (IVUS) and > 4.5 mm² OCT

MSA/average reference lumen > 80%
Where to use OCT?
Where to use OCT

• To guide PCI
 (IIa ESC Guidelines Myocardial Revascularization 2018)

• To identify mechanisms of stent failure
 (IIa ESC Guidelines Myocardial Revasc.)
Studies on percutaneous coronary interventions with OCT guidance

CLI-OPCI. Euroint 2012
Illumien I. Eur Heart J 2015
Illumien II. JACC Int 2015
Opinion. Eur Heart J 2017
Doctors. Circulation 2016
Illumien III. Lancet 2017
Clinical outcomes following intravascular imaging-guided vs. angiography-guided PCI. Meta-Analysis of 31 Studies and 17,882 patients
Buccheri et al. JACC:Cardiovasc. Interv. 2017

MACE

<table>
<thead>
<tr>
<th>Study</th>
<th>P-value</th>
<th>Odds Ratio (95% Crl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVUS vs Angiography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct</td>
<td></td>
<td>0.79 (0.67, 0.92)</td>
</tr>
<tr>
<td>indirect</td>
<td>0.8318</td>
<td>0.72 (0.30, 1.7)</td>
</tr>
<tr>
<td>network</td>
<td></td>
<td>0.79 (0.67, 0.91)</td>
</tr>
<tr>
<td>OCT/OFDI vs Angiography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct</td>
<td></td>
<td>0.68 (0.47, 1.0)</td>
</tr>
<tr>
<td>indirect</td>
<td>0.9842</td>
<td>0.69 (0.30, 1.6)</td>
</tr>
<tr>
<td>network</td>
<td></td>
<td>0.69 (0.49, 0.98)</td>
</tr>
<tr>
<td>OCT/OFDI vs IVUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct</td>
<td></td>
<td>1.0 (0.50, 2.0)</td>
</tr>
<tr>
<td>indirect</td>
<td>0.6106</td>
<td>0.81 (0.54, 1.3)</td>
</tr>
<tr>
<td>network</td>
<td></td>
<td>0.87 (0.61, 1.3)</td>
</tr>
</tbody>
</table>
Early restenosis was associated with MSA < 4.0 mm² while neoatherosclerosis contributed to late ISR.

Song et al. Euroinervention 2017
Clinical use of OCT: stent thrombosis

Raber et al. Eurointervention 2018

Early ST

Very late ST

Uncovered struts
- Uncovered struts: 64%
- BERN registry Circulation 2016

Malapposition
- Malapposition: 48%
- PESTO registry EHJ 2016

Underexpansion
- Underexpansion: 26%
- PRESTIGE registry Circulation 2017

Edge dissection
- Edge dissection: 19%

Malapposition
- Malapposition: 33%

Neointimal hyperplasia
- Neointimal hyperplasia: 30%

Uncovered struts
- Uncovered struts: 14%

Underexpansion
- Underexpansion: 14%

BERN registry Circulation 2016
PESTO registry EHJ 2016
PRESTIGE registry Circulation 2017
Case example 1. Female, 70yrs old, with non-STEMI. PCI in LAD with a stent Resolute 2.75/22mm 6 months ago because of STEMI.

PCI RESULT 4/2017

New angiography 10/2017
OCT imaging of stent thrombosis in LAD

White thrombus

Stent underexpansion

MSA = 4.2 mm2

Ca
OCT imaging of stent thrombosis in LAD
PCI result after implantation of a stent
Promus 3.0/20mm
OCT in LAD Post-PCI

Stent underexpansion

Ca

MSA = 3.8 mm²

Ca
Final result after post dilatation with non compliant balloon 3,5/15mm
OCT after final dilatation

Tissue protrusion

MSA = 6.2 mm²
CONCLUSIONS

• OCT has emerged as an exciting and powerful intravascular imaging modality
• OCT is able to provide immediate in-vivo information about the mechanism of plaque disruption, mode of stent failure, and can guide coronary interventions.
• Large, randomized studies are warranted to definitely elucidate the clinical role of OCT.