Μικτή πάθηση αορτικής βαλβίδας – κριτήρια χειρουργείου

Βασίλειος Σαχπεκίδης
Επ. Α’ Καρδιολογίας
Γ.Ν. Παπαγεωργίου Θεσσαλονίκης
No conflicts of interest
We are not talking about such patients

Follow up and treat the predominant lesion
Aetiology of moderate AS and AR

> 50%?
The Simple Arithmetic of Mixed Aortic Valve Disease

LVH + Volume Load = Trouble*

Normal Left Ventricle

LV Mass Index 75 g/m²
RWT <0.42
LVEDD 50 mm
LVESD 32 mm
LVEF 62%

Moderate (Isolated) Aortic Regurgitation

LV Mass Index 94 g/m²
RWT 0.32 (tolerated)
LVEDD 58 mm (tolerated)
LVESD 35 mm (tolerated)
LVEF 65% (tolerated)

Moderate Mixed Aortic Valve Disease

LV Mass Index 103 g/m² (tolerated)
RWT 0.28 (tolerated)
LVEDD 50 mm (tolerated)
LVESD 31 mm (tolerated)
LVEF 58% (tolerated)

Moderate (Isolated) Aortic Stenosis

LV Mass Index 128 g/m²
RWT 0.41
LVEDD 53 mm (tolerated)
LVESD 33 mm (tolerated)
LVEF 61% (tolerated)

Assessment of severity???

AVA = $\frac{SV}{VTI_{AV}}$
↑ SV due to AR – higher gradients compared to isolated AS for the same AVA
Neglect V_1 if only $< 1.2 \text{ m/s}$
Pressure Half Time may be misleading
Can severe AS and severe AR coexist?
What really matters...
Case – 10/2015

• 56 y old male

• No symptoms – Incidental finding: Murmur

• Smoker

• CA: no critical stenoses
TTE – 10/2015
Peak vel ~3,6 m/s – mean G ~29 mmHg – AVA ~1,4-1,5 cm² - LVOT-VTI ~30 cm
TTE – 10/2015
71 asymptomatic patients (52±17 y; 21 w) at least moderate AS and AR – prospective FU every 6 m for 8.9 y

- EP: cardiac death or indication for AVR

- 22 pts: mod AS + mod AR
- 9 pts: sev AS + sev AR
- 33 pts: sev AS + mod AR
- 7 pts: mod AS + sev AR

Interesting findings

• No patient required surgery because of criteria of LV dilation

• No sudden cardiac death occurred

• Of mod AS + mod AR pts 38% required surgery within 2y and 67% within 4 y

The importance of peak AV velocity

A

Event-free Survival (%)

Years

P < 0.0001

AV-Vel 3.0 to 3.9 m/s

AV-Vel 4.0 to 4.9 m/s

AV-Vel ≥ 5.0 m/s

B

Event-free Survival (%)

Years

P < 0.0001

AV-Vel 3.0 to 3.9 m/s

AV-Vel 4.0 to 4.9 m/s

AV-Vel ≥ 5.0 m/s

Outcomes in Moderate Mixed Aortic Valve Disease
Is it Time for a Paradigm Shift?

Alexander C. Egbe, MD, MPH, Sushil A. Luis, MBBS, Ratnasari Padang, MBBS, PhD, Carole A. Warnes, MD

• Retrospective – 251 asymptomatic pts (63 ± 11 y, 73% m) with moderate AS + AR follow up for 9.1 ± 4.2 y

• AE: NYHA III/IV, AVR, death

• AE occurred in 193 (77%) pts: symptoms (69%), AVR (67%), and cardiac death (4%)

• One patient had sudden cardiac death

Multivariable predictors of AE:
1. older age
2. relative wall thickness >0.42
<table>
<thead>
<tr>
<th></th>
<th>MAVD (n = 117)</th>
<th>Moderate AR (n = 117)</th>
<th>Moderate AS (n = 117)</th>
<th>Severe AS (n = 117)</th>
<th>P Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>79 (68)</td>
<td>79 (68)</td>
<td>79 (68)</td>
<td>79 (68)</td>
<td></td>
</tr>
<tr>
<td>Age, yrs</td>
<td>64 ± 8</td>
<td>63 ± 8</td>
<td>63 ± 5</td>
<td>64 ± 6</td>
<td>0.853</td>
</tr>
<tr>
<td>Follow-up, yrs</td>
<td>8.1 ± 4</td>
<td>7.8 ± 9</td>
<td>9.6 ± 5</td>
<td>7.1 ± 3</td>
<td>0.061</td>
</tr>
<tr>
<td>Echocardiography data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aortic peak velocity, m/s</td>
<td>3.5 ± 0.2</td>
<td>1.7 ± 0.6</td>
<td>3.4 ± 0.3</td>
<td>4.5 ± 0.4</td>
<td><0.0001</td>
</tr>
<tr>
<td>Aortic mean gradient, mm Hg</td>
<td>36 ± 2</td>
<td>16 ± 7</td>
<td>35 ± 4</td>
<td>48 ± 6</td>
<td><0.0001</td>
</tr>
<tr>
<td>Aortic valve area, cm²</td>
<td>1.38 ± 0.06</td>
<td>1.81 ± 0.08</td>
<td>1.22 ± 0.07</td>
<td>0.8 ± 0.02</td>
<td><0.0001</td>
</tr>
<tr>
<td>Aortic valve area index, cm²/m²</td>
<td>0.69 ± 0.03</td>
<td>0.98 ± 0.04</td>
<td>0.55 ± 0.04</td>
<td>0.41 ± 0.03</td>
<td><0.0001</td>
</tr>
<tr>
<td>Pressure half time, ms</td>
<td>361 ± 92</td>
<td>391 ± 109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV ejection fraction, %</td>
<td>61 ± 5</td>
<td>65 ± 7</td>
<td>58 ± 6</td>
<td>56 ± 4</td>
<td>0.19</td>
</tr>
<tr>
<td>LV end-diastolic dimension, mm</td>
<td>53 ± 7</td>
<td>58 ± 6</td>
<td>50 ± 6</td>
<td>48 ± 5</td>
<td>0.042</td>
</tr>
<tr>
<td>LV end-systolic dimension, mm</td>
<td>33 ± 8</td>
<td>36 ± 6</td>
<td>31 ± 7</td>
<td>28 ± 6</td>
<td>0.051</td>
</tr>
<tr>
<td>LV mass index, g/m²</td>
<td>138 ± 56</td>
<td>94 ± 14</td>
<td>103 ± 31</td>
<td>123 ± 31</td>
<td>0.016</td>
</tr>
<tr>
<td>Relative wall thickness</td>
<td>0.40 ± 0.07</td>
<td>0.32 ± 0.04</td>
<td>0.38 ± 0.03</td>
<td>0.42 ± 0.04</td>
<td>0.064</td>
</tr>
<tr>
<td>LV diastolic dysfunction</td>
<td>38 (32)</td>
<td>6 (5)</td>
<td>14 (12)</td>
<td>26 (22)</td>
<td>0.024</td>
</tr>
<tr>
<td>Left atrial volume index, ml/m²</td>
<td>31 ± 8</td>
<td>24 ± 5</td>
<td>26 ± 7</td>
<td>29 ± 3</td>
<td>0.17</td>
</tr>
<tr>
<td>RV systolic pressure, mm Hg</td>
<td>44 ± 3</td>
<td>33 ± 8</td>
<td>37 ± 8</td>
<td>41 ± 5</td>
<td>0.17</td>
</tr>
<tr>
<td>Aortic dimension 46–50 mm</td>
<td>21 (18)</td>
<td>18 (15)</td>
<td>11 (9)</td>
<td>17 (15)</td>
<td>0.096</td>
</tr>
<tr>
<td>Aortic dimension >50 mm</td>
<td>3 (3)</td>
<td>0</td>
<td>0</td>
<td>1 (1%)</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Prognosis is poor...

<table>
<thead>
<tr>
<th>First Author Year (Ref. #)</th>
<th>Population</th>
<th>Mean Age, yrs</th>
<th>Average LV Mass Index, g/m²</th>
<th>5-Yr Event-Free Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zilberszac et al. 2013 (17)</td>
<td>71 patients with ≥ moderate AS and ≥ moderate AR</td>
<td>52 ± 17</td>
<td>151*</td>
<td>26%</td>
</tr>
<tr>
<td>Rashedi et al. 2014 (11)</td>
<td>190 patients with either moderate AS and ≥ mild AR or moderate AR and ≥ mild AS†</td>
<td>65 ± 14</td>
<td>Not reported</td>
<td>40%‡</td>
</tr>
<tr>
<td>Egbe et al. 2016 (13)</td>
<td>117 patients with moderate AS and moderate AR</td>
<td>64 ± 8</td>
<td>138</td>
<td>29%</td>
</tr>
</tbody>
</table>

*Calculated from data provided in publication. †Included 130 patients with moderate AS and moderate AR. ‡Extrapolated from figure.

AS = aortic stenosis; AR = aortic regurgitation; LV = left ventricular; MAVD = mixed aortic valve disease.
Points worth noticing...

- Event free survival in less than 1/3 of patients at 5 years

- Peak vel (mean G) best reflects the haemodynamic burden in these patients and has prognostic implications

- Risk of sudden cardiac death is low if close follow up (every 6 - 12 m) is applied

- In most patients progression of AS occurs
No symptoms – BNP = 13 pg/ml
Peak vel~3,7 m/s – mean G~29 mmHg – AVA~1,4-1,5 cm² - LVOT-VTI~33 cm
Exercise echo 09/2017

Bruce protocol: 9 min and 01 secs – max HR~152 bpm (94%) – 10 METs – Normal BP response (BP max~190 mmHg)
Exercise echo 09/2017
No symptoms – BNP = 40 pg/ml
Peak vel~4,1 m/s – mean G~37 mmHg – AVA~1,3-1,4 cm² - LVOT-VTI~30 cm
Exercise echo – 12/2018
Exercise echo – 12/2018

Bruce protocol: 7 min and 19 secs – **SOB** – max HR~149 bpm (92%) – ~7 METs – Normal BP response (BP max~190 mmHg)
Exercise echo – 12/2018

Bruce protocol: 7 min and 19 secs – **SOB** – max HR~149 bpm (92%) – ~7 METs – Normal BP response (BP max~190 mmHg)
Exercise echo – 12/2018
Coronary angiogram
In summary...

- Coexistence of stenosis and regurgitation – pathological consequences that are incremental to the effects of either lesion alone

- Patients with at least moderate mixed AV disease have poor prognosis and need close FU for indications for intervention

- In most patients progression of AS occurs at the time of AVR – some develop symptoms with no progression of VHD (more LVH and DD)

- Sudden cardiac death is rare when close FU is applied

- Mean G (or peak vel) best reflects the haemodynamic burden in these patients (not AVA or other markers of AR severity)
Time to intervene in balanced moderate AS and AR

- Symptoms attributed to valvular heart disease – assessment of exercise haemodynamics may be very useful

- Objective consequences of LV compromise (EF<50% and/or ESD>50 mm???)
