The clues for new roles of vitamin D and vitamin D receptor in neurodegeneration.

Erdinç Dursun & Duygu Gezen-Ak

ISTANBUL UNIVERSITY-CERRAHPASA
CERRAHPASA FACULTY OF MEDICINE
DEPARTMENT OF MEDICAL BIOLOGY
BRAIN AND NEURODEGENERATIVE DISORDERS RESEARCH UNIT
ISTANBUL - TURKEY

THESSALONIKI, GREECE
2018

Nothing to declare
The beginning...

- Last decade gave us the opportunity to investigate the role of vitamin D and its receptor in development and disorders of central nervous system.

- Yet still the debate is going on validating the action of vitamin D and vitamin D receptor in brain.

- The aim of this talk is

- To draw a picture of

1. What we have asked?
2. What we have proved?
3. What we have learned?
4. What still remains to be discovered? 😊 a lot...

- in vitamin D basis of neurodegeneration
Alzheimer’s disease

Amyloid Plaques

Senile plaques (Silver Staining):
Amyloid aggregations (diffuse or dense) stained dark brown.
(http://www.medlib.med.utah.edu/WebPath/CNSHTML/CNS090.html)

Neurofibrillary Tangles

NFT, hematoxylene eosin.
Intracytoplasmic dense fibrillary structures
(http://www.medlib.med.utah.edu/WebPath/CNSHTML/CNS094.html)

These pathological structures cause:
- Distruption of axonal transport,
- Distruption of signal transmission between neurons,
- Distruption of neurotrophic factor synthesis
- Distruption of neuronal calcium homeostasis
- Induction of oxidative stress
Amyloid Beta

Generated by the cleavage of APP via the secretases

4kDa, 39-43 aminoacid
Does vitamin D act in brain?
Vitamin D receptor gene (VDR)- Alzheimer’s disease

- 1992 Sutherland et al.: **The hippocampi of the AD patients have decreased VDR mRNA expression.**

- 2001 Paduslo et al.: linkage study; indicated a **AD related risk locus on chromosome 12q**. No significant gene reported but the locus involved VDR in addition to other genes.

- 2006-2011: the first studies indicating **the relation between vitamin D deficiency and cognitive decline**.

- 2007 Gezen-Ak et al.: Certian **VDR polymorphisms increase the risk of developing AD 2.3 times.**

- 2009 Beecham et al.: **GWA study** (including 550,000 SNPs) **reported a AD associated novel locus at chromosome 12q13**. They indicated that among other genes VDR is the most probable candidate risk gene for AD given the data of Gezen-Ak study.

- 2012 Gezen-Ak et al.: **VDR “TaubF” haplotype** is more frequently seen in AD patients.
Genetic background of VDR-vitamin D pathway in neurodegenerative disorders

- **Association between VDR polymorphisms and Parkinson’s disease:**

- **Association between Low density lipoprotein receptor-related protein 2 (LRP2 or megalin) the transporter of vitamin D at the plasma membrane and AD:**

- **Association between LRP2 (megalin) polymorphisms and cognitive decline**

- **Association between vitamin D binding protein (GC, VDBP) polymorphisms and Parkinson’s disease:**
Serum 25OHD levels
The relation between vitamin D and neurodegeneration

- **Vitamin D deficiency and cognitive performance (2006-2010)**

- **Vitamin D levels and cognitive decline (2009-2010)**
Vitamin D deficiency and Alzheimer’s disease

- **Meta analysis**: Serum 25OHD levels of AD patients are significantly lower than that of healthy controls!

- **Vitamin D deficiency increases the risk of developing AD and vascular dementia (VaD)!**
 - A longitudinal study
 - 30 years follow up
 - 10,186 individuals

- **Vitamin D induces amyloid beta clearance of macrophages in AD patients!**

- **Annweiler and Beauchet (AD-IDEA)**
 - A combined treatment of both vitamin D and memantine (a well known AD drug).
 - Gave significantly better results compared with the memantine alone treated patients.
Littlejohns TJ. et al.
Vitamin D and the risk of dementia and Alzheimer disease.
Neurology. 2014

- In elderly people, increased risk of developing AD or dementia is significantly associated with vitamin D deficiency!

- **University of Exeter Medical School, UK**
- **David Llywellyn**
- **1,658 elderly individuals**
- White Americans
- **Over 65 years old**
- No dementia
- No signs of any cardiovascular diseases
- No stroke
- **6 years of follow up**
- **171 individuals develop dementia**
- 107 of them converts to AD

Fig. 1. Kaplan-Meier curves for unadjusted rates of all-cause dementia and Alzheimer disease by serum 25-hydroxyvitamin D (25(OH)D) concentrations.

Conclusion:

- **Mild vitamin D deficiency** increases the risk of developing dementia by 53%
- **Severe vitamin D deficiency** increases the risk of developing dementia by 125%
Nutrient Biomarkers for Dementia

- 666 individuals with no dementia
- Plasma levels of 22 nutrient biomarkers
- 12 years follow up
- Low levels of plasma vitamin D, carotenoids and polysaturated fats are associated with significantly high risk of dementia

Table 2
Baseline plasma concentrations of the 22 candidate nutrient biomarkers according to incident dementia over 12 years in the Bordeaux sample of the Three-City study (N = 666)

<table>
<thead>
<tr>
<th>Nutrient biomarkers</th>
<th>Incident dementia (n = 110)</th>
<th>No dementia (n = 356)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>25(OH)D, nmol/L</td>
<td>28.4 (13.1)</td>
<td>36.3 (18.9)</td>
<td><.001</td>
</tr>
<tr>
<td>α-carotene, μg/L</td>
<td>86.6 (64.4)</td>
<td>99.0 (78.1)</td>
<td>.06</td>
</tr>
<tr>
<td>β-carotene, μg/L</td>
<td>338.6 (226.0)</td>
<td>407.2 (304.2)</td>
<td>.005</td>
</tr>
<tr>
<td>Lycopene, μg/L</td>
<td>232.2 (150.9)</td>
<td>274.9 (170.9)</td>
<td>.75</td>
</tr>
<tr>
<td>Lučen, μg/L</td>
<td>161.9 (94.3)</td>
<td>168.1 (87.9)</td>
<td>.19</td>
</tr>
<tr>
<td>Zeaxanthin, μg/L</td>
<td>38.3 (26.1)</td>
<td>40.2 (23.6)</td>
<td>.21</td>
</tr>
<tr>
<td>θ-Cryptoxanthin, μg/L</td>
<td>135.9 (107.8)</td>
<td>168.4 (127.7)</td>
<td>.11</td>
</tr>
<tr>
<td>Vitamin E, μg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Tocopherol, μg/L</td>
<td>13.9 (3.6)</td>
<td>13.4 (3.3)</td>
<td>.17</td>
</tr>
<tr>
<td>γ-Tocopherol, μg/L</td>
<td>0.06 (0.4)</td>
<td>0.06 (0.3)</td>
<td>.32</td>
</tr>
<tr>
<td>Retinol, μg/L</td>
<td>502.2 (153.5)</td>
<td>511.0 (145.3)</td>
<td>.72</td>
</tr>
</tbody>
</table>

Fatty acids, % of total fats
- Saturated fatty acids
 - Myristic acid (14:0): 1.3 (0.4)
 - Palmitic acid (16:0): 28.4 (5.7)
 - Stearic acid (18:0): 11.8 (3.8)
- Monounsaturated fatty acids
 - Palmitoleic acid (16:1 n-7): 2.3 (0.9)
 - Oleic acid (18:1): 20.2 (3.8)
- Polyunsaturated fatty acids
 - Linoleic acid (18:2 n-6): 24.6 (5.5)
 - γ-Linolenic acid (18:3 n-6): 0.4 (0.2)
 - Arachidonic acid (20:4 n-6): 6.6 (2.1)
 - θ-Linolenic acid (18:3 n-3): 0.4 (0.3)
 - Eicosapentaenoic acid (20:5 n-3): 1.0 (0.6)
 - Docosapentaenoic acid (22:5 n-3): 0.5 (0.1)
 - Docosahexaenoic acid (22:6 n-3): 2.4 (0.8)

NOTE: Values are mean (standard deviation). P values were estimated using univariate Cox proportional hazard models with delayed entry (and age as a time scale).

Featured Article

Nutrient biomarker patterns and long-term risk of dementia in older adults

Camille Amadieu, Sophie Lefèvre-Arbogast, Cécile Delcourt, Jean-François Dartigues, Catherine Helmer, Catherine Féart, Cécilia Samieri

University of Bordeaux, ONSMB, Bordeaux, Population Health Research Center, UMR 1219, Bordeaux, France
The correlation of CSF vitamin D (25OHD) and CSF amyloid beta 1-42 levels in 50 patients with dementia (AD or Non-AD) (N=50; r = 0.3726, p=0.0077)

*Season adjusted 25OHD levels

Unpublished data
Growing evidence suggests a neurosteroid like properties for vitamin D.

Yet sceptics are asking the same question more than a decade:

Is it really there?

In other words:
(Does vitamin D have an action in brain as we know it?)
The cerebral expression of vitamin D-associated enzymes and receptors?
VITAMIN D RECEPTORS

- Vitamin D, regulates over 1,000 genes in different tissues and in different conditions via a nuclear hormone receptor which is vitamin D receptor (VDR) and via its suggested membrane receptor (1,25MARRS)
 - Vitamin D receptor
 - Location: membrane lipid rafts, cytoplasm and nucleus
 - Genomic function - Transcription factor (cytoplasmic or nuclear VDR)
 - Fast non genomic function - Induction of various signalling pathways (membrane VDR)
 - Membrane receptor (membrane associated rapid response steroid binding protein-1,25 MARRS), ERp57, Grp58, Pdia3
 - Location: membrane lipid rafts, ER and nucleus
 - Genomic function - Transcription factor
 - Fast non genomic function - Induction of various signalling pathways
 - Protein folding

Magnification x100, I/3 filter, Alexafluor 488 tagged anti-VDR (green); TX filter, Alexafluor 568 tagged anti-1,25-MARRS (red). Overlay picture: VDR and 1.25-MARRS colocalization (yellow)
Long before us:

- Bidmon et al., 1991; Musiol et al., 1992; Stumpf and O'Brien, 1987
 - *Initial identification of the cells that contains VDR in the brains* of rats and hamsters
 - Radiolabeled 1,25(OH)2D3 and autoradiography

- The presence of the VDR was confirmed *in the brains of mice, rats, chicks and humans*
 - when a specific antibody against the VDR was developed
 - Eyles et al., 2005; Prufer et al., 1999; Sutherland et al., 1992; Veenstra et al., 1998; Walbert et al., 2001; Zanello et al., 1997.

- In the adult rodent brain,
- the VDR is located within different cell types, including
 - neurons, astrocytes (Brown et al., 2003; Cui et al., 2013; Eyles et al., 2005),
 - oligodendrocytes (Baas et al., 2000)
 - in multiple brain regions (Prufer et al., 1999; Veenstra et al., 1998).
Landel study (2018)

- Compared the transcript expression of Cyp27a1, Cyp27b1, Cyp24a1, VDR and Pdia3 in purified cultures of astrocytes, endothelial cells, microglia, neurons and oligodendrocytes.

- Observed that endothelial cells and neurons can possibly transform the inactive cholecalciferol into 25(OH)D3.
- Neurons or microglia can metabolise 25(OH)D3 into 1,25(OH)2D3.

- Alternatively, 1,25(OH)2D3 can induce autocrine or paracrine rapid non-genomic actions via PDIA3 whose transcript is abundantly expressed in all cerebral cell types.

- Their data indicate that, within the brain, vitamin D may trigger major auto-/paracrine non genomic actions, in addition to its well documented activities as a steroid hormone.

The subcellular location of VDR

- 2014. Eyles D.W. et al. demonstrated that,

- in all **embryonic tissues**
 - VDR distribution **is mostly nuclear**,
- however by **adulthood**
 - at least in the gut and kidney,
 - VDR presence **in the plasma membrane** is more prominent
 - (indicating some change in VDR function with the maturation of these tissues?)

- The subcellular distribution of VDR in the embryo
- did not appear to be altered by vitamin D deficiency
 - indicating that perhaps there are other mechanisms at play in vivo to stabilize this receptor in the absence of its ligand.

Eyles D.W. et al. Neuroscience 268 (2014) 1-9
Subsection conclusion:

- The location of VDR and PDIA3 is well established in CNS,

- The location and action of vitamin D metabolism related enzymes including Cyp27a1, Cyp27b1, Cyp24a1 are demonstrated in major cell types of CNS

- Vitamin D has major auto-/paracrine non genomic actions, in addition to its well documented activities as a steroid hormone in CNS
Cellular and animal models of neurodegeneration
Hypothesis

Why Vitamin D in Alzheimer’s Disease?
The Hypothesis

Duygu Goren-Ak, Selma Yilmaz and Erdal Duran*
The corrected total cell fluorescence (CTCF) was determined and calculated as:

\[
CTCF = \text{integrated density} - (\text{area of selected cell} \times \text{mean fluorescence of background readings})
\]

<table>
<thead>
<tr>
<th>Groups in 24h</th>
<th>The percentage of induction in amyloid beta 1-42 levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDR siRNA treated neurons</td>
<td>189% induction</td>
</tr>
<tr>
<td>1,25MARRS (PDIA3) siRNA treated neurons</td>
<td>205% induction</td>
</tr>
<tr>
<td>VDR siRNA + 1,25MARRS (PDIA3) siRNA treated neurons</td>
<td>163% induction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groups in 48h</th>
<th>The percentage of cells that express amyloid beta 1-42 higher than the cuttoff value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDR siRNA treated neurons</td>
<td>76% of the cells</td>
</tr>
<tr>
<td>1,25MARRS (PDIA3) siRNA treated neurons</td>
<td>83% of the cells</td>
</tr>
<tr>
<td>VDR siRNA + 1,25MARRS (PDIA3) siRNA treated neurons</td>
<td>68% of the cells</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groups in 48h</th>
<th>The percentage of induction in amyloid beta 1-42 levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDR siRNA treated neurons</td>
<td>136% induction</td>
</tr>
<tr>
<td>1,25MARRS (PDIA3) siRNA treated neurons</td>
<td>172% induction</td>
</tr>
<tr>
<td>VDR siRNA + 1,25MARRS (PDIA3) siRNA treated neurons</td>
<td>136% induction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groups in 48h</th>
<th>The percentage of cells that express amyloid beta 1-42 higher than the cuttoff value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDR siRNA treated neurons</td>
<td>59% of the cells</td>
</tr>
<tr>
<td>1,25MARRS (PDIA3) siRNA treated neurons</td>
<td>74% of the cells</td>
</tr>
<tr>
<td>VDR siRNA + 1,25MARRS (PDIA3) siRNA treated neurons</td>
<td>63% of the cells</td>
</tr>
</tbody>
</table>
the corrected total cell fluorescence (CTCF) was determined and calculated as
CTCF = integrated density − (area of selected cell × mean fluorescence of background readings)

<table>
<thead>
<tr>
<th>Groups in 24h</th>
<th>The percentage of reduction in amyloid beta 1-42 levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻⁷ M 1,25(OH)₂D₃ treated neurons</td>
<td>27% reduction</td>
</tr>
<tr>
<td>10⁻⁸ M 1,25(OH)₂D₃ treated neurons</td>
<td>50% reduction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groups in 24h</th>
<th>The percentage of cells that express amyloid beta 1-42 lower than the cutoff value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻⁷ M 1,25(OH)₂D₃ treated neurons</td>
<td>79% of the cells</td>
</tr>
<tr>
<td>10⁻⁸ M 1,25(OH)₂D₃ treated neurons</td>
<td>95% of the cells</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groups in 48h</th>
<th>The percentage of reduction in amyloid beta 1-42 levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻⁷ M 1,25(OH)₂D₃ treated neurons</td>
<td>17% reduction</td>
</tr>
<tr>
<td>10⁻⁸ M 1,25(OH)₂D₃ treated neurons</td>
<td>21% reduction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groups in 48h</th>
<th>The percentage of cells that express amyloid beta 1-42 lower than the cutoff value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻⁷ M 1,25(OH)₂D₃ treated neurons</td>
<td>75% of the cells</td>
</tr>
<tr>
<td>10⁻⁸ M 1,25(OH)₂D₃ treated neurons</td>
<td>79% of the cells</td>
</tr>
</tbody>
</table>
Vitamin D receptor (VDR) and MARRS regulate amyloid-beta (APP) processing. Induction or suppression of APP processing depends on time and concentration. Pearson HA et al. J Physiol 2006;575:5-10.
Subsection conclusion:

- Vitamin D and VDR definitively have functions in CNS,
- Their dysregulation in CNS has a high potential to cause or at least to be involved in
- neurodegenerative, neurological or neuroinflammatory disorders
Neurodegeneration: Loss of function - death of a neuron

What does vitamin D do in a neuron? How does it do that?

Future Directions:
Novel properties of vitamin D and its receptors may emerge from the relation between amyloid beta and vitamin D?

- **Hypothesis 1**
 - VDR is a transcription factor!
 - Amyloid beta 1-42 is a transcription factor?
 - Both of them regulates or at least acts on same genes or genes with similar functions?
 - A dysfunction in one of them will create an imbalance between them and may trigger pathways of neurodegeneration?

- **Hypothesis 2**
 - VDR is located on neuronal plasma membrane!
 - VDR contributes to the action of the proteins involved in amyloidogenic or non-amyloidogenic pathways located in neuronal plasma membrane!
 - Vitamin D deficiency or VDR dysfunction may contribute to dysfunction of these pathways!
Hypoteseis 1

- **Hypothesis 1**
 - VDR is a transcription factor
 - Amyloid beta 1-42 is a transcription factor
 - Both of them regulates or at least acts on same genes or genes with similar functions
 - A dysfunction in one of them will create an imbalance between them and may trigger pathways of neurodegeneration

- **Is amyloid beta 1-42 present in nucleus?**
- **Is amyloid beta 1-42 a transcription factor?**
- **Does amyloid beta 1-42 regulate the expression of neurodegeneration related genes?**
Figure 5. Aβ1–42 localization depends on antibiotics (PenStrep) administration. Immunofluorescent labeling of Aβ1–42 (green), Tau46 (red) was counter-labeled as a neuronal marker, 63X (confocal microscopy images). (A) Neurons treated with 10 IU/ml PenStrep. Aβ1–42 is localized both in the cytoplasm and nucleus. The immunoreactivity was strong in the nucleus. (B) Neurons treated with 3 IU/ml PenStrep. Aβ1–42 is localized in the cytoplasm and nucleus. The immunoreactivity was moderate in the nucleus compared with the 10 IU/ml PenStrep-treated neuron. (C) Untreated neurons. Aβ1–42 is mostly localized in the cytoplasm, and weak expression was detected in the nucleus. The data indicated that the localization of Aβ1–42 changed in 10 IU/ml PenStrep-treated neurons compared to neurons that were not treated with PenStrep, but no significant difference in the CTCF of Aβ1–42 was found in these groups.
THE ALZHEIMER’S AMYLOID β–PEPTIDE (Aβ) BINDS A SPECIFIC DNA Aβ–INTERACTING DOMAIN (AβID) IN THE APP, BACE1, AND APOE PROMOTERS IN A SEQUENCE–SPECIFIC MANNER: CHARACTERIZING A NEW REGULATORY MOTIF

Bryan Maloney1 and Debomoy K. Lahiri1,2,*

1Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
2Laboratory of Molecular Neurogenetics, Department of Medical and Molecular Genetics, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA

Abstract

Deposition of extracellular plaques, consisting of amyloid β peptide (Aβ), in the brain is the confirmatory diagnostic of Alzheimer’s disease (AD). However, the physiological and pathological role of Aβ is not fully understood. Herein, we demonstrate novel Aβ activity as a putative transcription factor upon AD–associated genes. We used oligomers from 5′–flanking regions of the apolipoprotein E (APOE), Aβ–precursor protein (APP), and β–amyloid site cleaving enzyme 1 (BACE1) genes for electrophoretic mobility shift assay (EMSA) with different fragments of the Aβ peptide. Our results suggest that Aβ bound to an Aβ–interacting domain (AβID) with a consensus of “KGGKKTGGGG”. This peptide–DNA interaction was sequence specific, and mutation of the first “G” of the decamer’s terminal “GGGG” eliminated peptide–DNA interaction. Furthermore, the cytotoxic Aβ25–35 fragment had greatest DNA affinity. Such specificity of binding suggests that the AβID is worth of further investigation as a site wherein the Aβ peptide may act as a transcription factor.
Vitamin D receptor is present on the neuronal plasma membrane and is co-localized with amyloid precursor protein, ADAM10 or Nicastrin.

Supplementary Table 1: The FpClass PPI prediction tool was used to identify partner proteins for both APP and VDR. The tool predicted 1133 partners for APP and 583 partners for VDR. An analysis of the FpClass tool data indicated that 153 of these partners interacted with both APP and VDR. A total of 153 proteins were classified according to their functions.

<table>
<thead>
<tr>
<th>Protein Translation/Modification</th>
<th>MEMBRANE/membrane related proteins</th>
<th>TRANSCRIPTION FACTORS/REGULATION</th>
<th>NFkbeta pathway</th>
<th>Nuclear receptors</th>
<th>Cell cycle/Apoptosis</th>
<th>Cytokines/immune response</th>
<th>Intracellular signalling pathways</th>
<th>Chaperons</th>
<th>Proteosome pathway</th>
<th>Cytoskeleton</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBR1</td>
<td>CTNNB1</td>
<td>TLR1</td>
<td>TAB1</td>
<td>IRAK4</td>
<td>CDK5</td>
<td>IFNAR1</td>
<td>CDK16</td>
<td>VIM</td>
<td>ACTB</td>
<td></td>
</tr>
<tr>
<td>RPL31</td>
<td>CDH1</td>
<td>IFIT3</td>
<td>IRAK4</td>
<td>CDK5</td>
<td>CASK1</td>
<td>IFNAR1</td>
<td>CDK16</td>
<td>VIM</td>
<td>ACTB</td>
<td></td>
</tr>
<tr>
<td>EIF2AK2</td>
<td>CDH1</td>
<td>IFIT3</td>
<td>IRAK4</td>
<td>CDK5</td>
<td>CASK1</td>
<td>IFNAR1</td>
<td>CDK16</td>
<td>VIM</td>
<td>ACTB</td>
<td></td>
</tr>
<tr>
<td>SUMO1</td>
<td>CDH1</td>
<td>IFIT3</td>
<td>IRAK4</td>
<td>CDK5</td>
<td>CASK1</td>
<td>IFNAR1</td>
<td>CDK16</td>
<td>VIM</td>
<td>ACTB</td>
<td></td>
</tr>
</tbody>
</table>

Note: If there are any specific regions or data points that need further attention, please specify.
alpha secretase (ADAM10),

beta secretase (BACE1),

the gamma secretase complex (PS-1, PS-2, Nicastrin),

the substrate APP,

APOE (the significant risk factor for sporadic form of the AD),

TREM2 (recently indicated as a contributor to AD risk), the NMDR genes Grin1, Grin2a, Grin2b, Grin2c, Grin2d, Grin3, PKCzeta as contributors of memory and learning,

key elements of tau pathology such as tau, GSK3α, GSK3β and Cdk5,

cholecalciferol metabolism-related enzyme 1α hydroxylase (1αOHase-encoded by CYP27b1 gene).

Needs confirmation with ChIP
If amyloid beta 1-42 is a transcription factor then it may have important functions beyond today's knowledge.

If that is the case then treatments targeting total elimination of amyloid beta might be reconsidered!

High amount of amyloid beta 1-42 may increase its production working as a transcription factor and change the expression of neurodegeneration promoting genes?

We know that VDR regulates most of these genes that is foretold.

If VDR and amyloid beta 1-42 effects the transcription of the same genes then the absence of one may disrupt the balance in neurons.

Vitamin D deficiency or VDR dysfunction may promote this imbalance.

The presence of amyloid beta 1-42 itself reduces VDR expression and vitamin D production and induces vitamin D catabolism.
Besides transcriptional regulation... Vitamin D and amyloid beta have a cross talk over post transcriptional regulation via miRNAs

let-7a-5p, mir-26b-5p, mir-27b-3p, mir-31-5p, mir-125b-5p, mir-192-5p,

are suggested to be related with

- vitamin D metabolism,
- neuronal differentiation,
- development
- and memory
Adequate levels of Vitamin D,
Well functioning VDR, 1,25MARRS/PDIA3

Healthy cell, healthy cell maintenance and aging

Loss of cell maintenance, neurodegeneration

Low levels of Vitamin D,
Dysregulated VDR, 1,25MARRS/PDIA3

High levels of Amyloid 1-42

• If VDR and amyloid beta 1-42 effects the transcription or post-transcriptional regulation of the same genes then the absence of one may disrupt the balance in neurons.

• Vitamin D deficiency or VDR dysfunction may promote this imbalance.
Hypothesis 2

- VDR is located on neuronal plasma membrane!
- VDR contributes to the action of the proteins involved in amyloidogenic or non-amyloidogenic pathways located in neuronal plasma membrane!
- Vitamin D deficiency or VDR dysfunction may contribute to dysfunction of these pathways!

- Is VDR present in neuronal plasma membranes?
- Is VDR colocalized with the proteins of amyloidogenic or non-amyloidogenic pathways?
Vitamin D receptor is present on the neuronal plasma membrane and is co-localized with amyloid precursor protein, ADAM10 or Nicastrin.

anti-1,25 MARRS/Erp57
OVERLAY

OVERLAY
DOUBLE IMMUNOFLUORESCENT LABELING OF VDR and 1,25MARRS/Erp57
AFTER FIXATION

CELL SURFACE LABELING OF VDR FOLLOWED BY FIXATION and MAP2 IMMUNOFLUORESCENT LABELING

anti-1,25 MARRS
anti-VDR
OVERLAY

anti-VDR

anti-MAP2

CELL SURFACE LABELING OF VDR FOLLOWED BY FIXATION and MAP2 IMMUNOFLUORESCENT LABELING

x83, I/3, Alexafluor 488, anti-VDR (green); TX, Alexafluor 568, anti- MAP2 (red) was used as neuronal marker.
Vitamin D receptor is present on the neuronal plasma membrane and is co-localized with amyloid precursor protein, ADAM10 or Nicastrin.
How does VDR translocates into plasma membrane?

Which proteins are interacting with VDR directly in plasma membranes?

What does VDR do in neuronal plasma membrane?

Investigations are ongoing...
Energy metabolism, vitamin D and VDR?

- The enzymes involved in vitamin D metabolism such as
 - CYP27A1 (25-hydroxylase),
 - CYP27B1 (1α-hydroxylase) and
 - CYP24A1 (24-hydroxylase),
- are located in mitochondria.
Our results indicate that

1. vitamin D or the disruption of vitamin D pathway have effects on mitochondrial gene expression.

2. vitamin D receptor might have a role as a transcription factor in mitochondria.

3. vitamin D deficiency or the disruption of vitamin D pathway might cause mitochondrial dysfunction which is accepted as one of the major reason in the development of neurodegenerative disorders.
Conclusion

- The location of **vitamin D receptors or vitamin D metabolism related enzymes** is well established in CNS.

- Vitamin D and VDR **definitely have functions in CNS.**

- Their **dysregulation** in CNS has a **high potential to cause or at least to be involved in**
 - **neurodegenerative, neurological or neuroinflamatory disorders**

- Vitamin D has **major auto-/paracrine non genomic actions**, in addition to its well documented activities as a **steroid hormone in CNS**

- **Vitamin D and VDR** might be a part of **signal relaying complex in neuronal plasma membrane**

- **Vitamin D and VDR** may regulate gene expression together with **amyloid fragments**
 - The balance in such regulation might be a key for preventing neurodegeneration

- **Vitamin D and VDR** regulate **mitochondrial gene expression** and thus **energy metabolism**
The reviewed studies of BNDRL funded by,

The Scientific and Technological Research Council of Turkey (TUBITAK)
Project No:
115S438
214S585
214S586
217S375

and
Research Fund of Istanbul University
Project No:
ONAP-21712
ONAP-28651
27781
55157
51454
32605
26645
24360